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CHAPTER I 

INTRODUCTION 

The  problem of acquisition  and  identification of a landmark  with- 
in a given  field of view is t r ea t ed   he re   f rom two  points of view: 

1. Identification of a landmark: 

2. Estimation of its translation  and  rotation  with  respect 
to   the  reference  f rame.  

One application of this   approach  is   to  a navigation  problem, One 
may  have a photograph of an  island  and  the  coordinates  and  altitude  at 
which  the  photograph  was  recorded. If at  a la ter   t ime a camera   car ry ing  
vehicle  f l ies  over  this  island  at   the  same  alt i tude,   then  as  the  island 
comes  into  the  field of view of the  camera,  one can,  by the  approach 
presented  here ,   es t imate   posi t ion  ( t ranslat ion)   and  or ientat ion ( rotation) 
of the  craft  with  respect  to  the  island,  These  estimates  then  could be 
used  to  command  the  propulsion  system  and  navigate  the  vehicle. 

In  addition  to  applications  in  landmark  identification  and  acquisi- 
tion,this  approach  is  potentially  useful  in  problems of automatic  docking 
since  i t   permits  measurement of rotation  and  translation of the  docking 
target  with  respect  to  docking  craft ( command  module).  This  means a 
television  camera  onboard  the  docking  craft  takes a picture of the  docking 
target.  By detection of the  rotation  and  translation of the  docking  target 
with  respect  to  the  stored  reference,  the  docking  craft  can  position  itself 
f o r  automatic  docking. 

The  approach  presented  here  requires  edge  enhancement 
s o  that  the  boundaries of the  landmark  are  detected  and  uses  the  informa- 
tion  contained  in  the  boundary of the  pattern  by  successively  reading  the 
coordinates of the  boundary  and  developing a nonlinear  regression  analysis 
technique  for  simultaneous  estimation of rotation  and  translation of the 
landmark.  This  method  appears to  be very  sensitive  and  offers  high 
resolution  both  in  rotation  and  translation  parameters.  



In  this  research  only  two-dimensional  landmarks  or  patterns 
were  considered.  Specifically  patterns  in  the  form of ellipses  and 
rectangles  were first considered.  The  motivation  for  these  two  classes 
was  to  consider a c l a s s  of simple  shapes  that   can  be  analytically  repre- 
sented,  and  another  class  that  could  not be analytically  represented.  In 
addition,  different  amounts of sensor  noise  and  measurement  noise  were 
added  to the coordinates of the  boundary  points  to  check  the  performance 
of this  method  under a var ie ty  of circumstances.  

While  some  alternative  methods  such  as  detection of centroid;  etc. , 
may  be  more  useful f o r  recognition of rectangles  and  ellipses,  noting 
that by recognition  we  mean  measuring  rotation,  translation  and  size of 
a pattern,  it was  felt   necessary  to  consider a more  general   approach 
that  would  be  applicable to  more   c l a s ses  of two  dimensional  patterns 
as   wel l   as   three  -dimensional   pat terns .  

Since  the  method is based on tracking  the  boundary of a pattern,  
a review of the  state of the art   in  boxhdary  tracking  and its application 
in  pattern  recognition,  estimation,  etc.,  is provided  in  Chapter 11 under 
the  title of quantization  and  encoding of arbitrary  curves.   In  Chapter 
111, the  fundamental  nonlinear  regression  analysis  approach  is  discussed. 
In  Chapter IV the  recognition of ell iptical   planar  patterns is presented. 
In  Chapter V the  recognition of rectangular  planar  patterns is discussed. 
Conclusions, a summary  of the  results,   and  potential   future  research 
a reas   a re   d i scussed   in   Chapter  VI. Fo r   u se  of interested  readers ,   the  
main  computer   program is also  documented  in  an  appendix. 
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CHAPTER I1 

QUANTIZATION AND ENCODING O F  
ARBITRARY  CURVES 

This  chapter is concerned  with a review of approaches  to  boundary 
tracking  and  implementation of the  boundary  information  in  recognition, 
coding,  estimation,  etc. A more  common  name  associated  with  this 
area  has  been  contour  tracing  which  has  been  used  in  the  f ield of .pattern 
recognition  and  specifically  in  feature  extraction  techniques. 

In  the  general  problem of pattern  recognition,  many  researchers 
feel   that   "contours  carry a significant  fraction of the  information  re- 
quired f o r  recognition of image  objects"[ 11 . Since  the  recognition 
scheme  developed  in  this  research  uses  contour  information  exclusively, 
i t   seems  appropriate  to  review  some of the  work  which  has  been  done  in 
this   area.  

Since  most  pattern  recognition  schemes  are  carried  out on a 
digital   computer,   i t  is necessary  to  be able  to  represent a pattern  in a 
f o r m  which  may be easily  manipulated by a digital  computer.  More 
specifically, if  one is given a pictorial   representation of some  planar 
configuration,  i t   is   desirable  to  quantize  and  encode  the  boundary  curve 
of this  pattern  into a f o r m  such  that  the  digital  computer  can  easily  find 
such  properties of the  pattern  as  area,   length of the  boundary  curve, 
width,  height,  and  others  to be discussed  la ter .  

A great   deal  of work  in  quantizing  and  encoding  arbitrary  plane 
curves  has  been  done by many  researchers .  [ 2 -91 It  is  the  intent of this 
chapter  to  review  some of this   research,   par t icular ly   that  of the  chain 
representation as developed  by H. Freeman.  [ 10-  161 

Of the  many  ways  in  which  an  arbitrary  planar  curve ( assumed t o  
be continuous)  may be quantized, a particularly  simple  technique is 
called  the  grid-intersect  quantization  method.  In  this  method  the  curve 
is placed  over a square  gr id ,  and  the  grid  node  lying  closest t o  the 
point of intersection of the  curve  with a given  grid  line is considered to  
be a point on the  quantized  curve.  Such a grid  node is called a curve 
point.  This  procedure  is  illustrated  in  Figure  1,  where  the  separation 
between  adjacent  grid  nodes is T. 
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Fig. 1 --Node  points f o r  a continuous  curve. 

The  lines  connecting  adjacent  curve  points  have  length T or  
4 2  T ,  as   seen   f rom  F igure  1. The  quantized  curve  becomes a better 
approximation  to  the  original  curve  as  the  grid  separation, T, becomes 
small   compared  to  the  smallest   instantaneous  radius of curvature  of 
the  original  curve,   Freeman [ 111 points  out  that   the  grid  intersect 
quantization  method  has  an  advantage  over  similar  quantization  tech- 
niques  in  that it comes  the  closest  to  giving  equal  probability t o  the 
occurrence of adjacent  curve  points  which  are  diagonal. F o r  an   a rb i -  
t r a ry   cu rve  one  would expect one  half of the  adjacent  curve  points  to be 
connected by diagonal  lines  and  one  half t o  be connected by horizontal 
and  vertical  lines. 

Once  the  curve  points  have  been  determined,  it is desirable   to  
encode  these  points  in  some  manner  that  affords  economy  in  computer 
storage  requirements  and  permits  analytical   manipulations of the  pattern 
to be accomplished. One obvious  encoding  would  be  to  simply  store  the 
coordinates of each of the  curve  points.  However,  even  for a relatively 
coarse   g r id   ( say   1024 by 1024),  each  curve  point  would  require 10 bits 
f o r  each of its coordinates. A more  economical  encoding  scheme  takes 
advantage of the  fact  that  since  the  curve  which  was  quantized is con- 
tinuous,  then  successive  curve  points  must be adjacent,  as  shown  pic- 
torially  in  Figure 2. The  center  node  is   assumed  to be a curve  point 
and  the  next  curve  point  must be one of the  eight  nodes  shown. 

If the  straight  lines  which  join  the  center  node  with  each of the 
surrounding  eight  nodes  are  assigned  the  same  number as the  correspond- 
ing  outer  node,  then  the  original  curve  may be represented by a sequence 
of short  line  segments,  with  each  line  segment  encoded by an  integer 
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Fig. 2--Numbering  scheme for adjacent  curve 
points. 

Fig.  3--Chain  representation of a continuous 
curve. 
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between 0 and 7. A line  segment  connecting two adjacent  curve  points 
is r e fe r r ed   t o  as an  element,  and  the  sequence of elements  which  repre- 
sents  the  curve is called a chain.  Thus,  curve A in   Figure 3 may  be 
represented by the  straight  line  segment  curve B which is characterized 
by  the  chain  112221107765667, If the  absolute  location of curve A is 
required  with  respect  to  the  x-y  coordinate  system,  then  the  start ing 
point,  or  initium, of the  chain  must be specified.  In  this  case it is 
denoted  by (xo , yo ) . It is apparent  that  the  dimension of the  measure- 
ment  space  has  been  drastically  reduced  since now,  with  the  exception 
of the  starting  point,  each  element ( and therefore  each  curve  point) 
requires  only 3 bits of computer  storage  to  specify it compared  to 20 bits 
which are  necessary  to  specify  the  coordinates of each  curve  point. 
Actually, if  the  value of a given  element is known,  then  the  next  element, 
in  general,  will  not  assume  each of its eight  possible  values  with  equal 
probability,  This  fact  can be used  to  further  increase  the  coding 
efficiency by employing a chain-difference  encoding  scheme. [ 111 

The  chain B, which is the  stpaight  line  segment  representation 
of curve A in  Figure  3,  may be written  using  the  chaining o r  "concate- 
nation"  operator C defined by 

n 

i = 1  
B bib, - - - bn = C bi 

where  bi = 0 ,  1, 2,  3,4, 5, 6, or  7 

and  the  element  bi  connects  curve  points i -1 and i. I t   is   apparent  that  
the  number of elements  in a chain  will be proportional  to  the  length of 
the  curve  and  inversely  proportional  to  the  grid  separation,  T.  Further- 
more ,   fo r  a curve  that  is  quantized  into n curve  points,  the  associated 
chain wi l l  have  n-1  elements if the  curve  is  open,  and n elements if the 
curve  is  closed.  It is  also  readily  apparent  that  the  angle  which  an 
element  makes  with  respect  to  the  positive  x-axis is simply  the  element 
value  multiplied by  45". 

Before  considering  some of the  properties  which  chains  possess, 
a few of the  ambiguities  in  the  chain  representation  should  be  pointed 
out.  Consider,  for  instance,  the  chain  given  in  Figure 3. If the  abso- 
lute  position of this  chain  is  not  important,  then  the  coordinates of the 
initium, (x,, yo ) , can be disregarded  and  the  chain is given by 
112221  107765667 as  before.  However,  the  chain  may  also be written as 
322123345566655.  This  chain  represents  exactly  the  same  straight  line 
segment  curve,   but  traced  in  the  reverse  direction.  Chains  possessing 
this  property  are  called  inverses.   Similarly,   elements  whose  slopes 
differ by  180" are  called  inverse  elements.   Therefore,   the  elements 
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ai   and  a i   are   inverses  if 
-1 

-1 
ai = ai t 4 

where  the  symbol i designates  modulo  eight  addition.  Thus,  an  inverse 
chain is obtained  by  finding  the  inverse  elements of the  elements of the 
original  chain  and  then  reversing  the  order of the  inverse  elements.  

F r o m  the  above  discussion it is   apparent  that   any  simple  open 
curve  (no  self-intersections)  has  two  chain  representations,   each being 
the  inverse of the  other. A simple  closed  curve,  on  the  other  hand, 
may be represented  by  any one of  2n different  chains.  This  is  due  to 
the  fact   that   there is no  unique  starting  point f o r  the  chain;  in  fact,  the 
chain  can  start   at   any one of the n curve  points  to  give a total of n 
different  chain  representations.  Some of the  ambiguity  in  the  chain 
representation of a closed  curve  can be eliminated i f ,  for  instance,  the 
curve  is   always  traversed  in  the  clockwise  direction,  and  the  start ing 
point is  always  chosen  to  be  the  curve  point  which  is  nearest  to  the  origin. 

It  is now appropriate  to  consider  some of the  properties  which 
chains  possess.   These  properties  may  then be incorporated  into a 
var ie ty  of pattern  classification  schemes.  I t  is seen  that a chain  is  
invariant  with  translation;  that  is  to  say, a chain  becomes  fixed  in a 
coordinate  system  only  after  the  coordinates of its  initium  have  been 
specified. A chain  may be rotated by k. 4 5" by  the  modulo  eight  addition 
of k to  each  element of the  chain,  where k is  an  integer.  However,  the 
rotation  is  distortion-free  only  when k is  an  even  integer,  since  when 
k is an odd integer  the  length of any  element  in  the  original  chain  is 
changed  from T to 4 2  T o r  vice  versa.  

The  length of a chain  may be directly  computed by  counting  the 
number of even  elements,  ne,  and  the  number of odd elements,   no.  
Since  an  even  element  has  length  T,  while  an odd element  has  length 
4 2  T,  the  length of the  chain is simply 

If n,  the  total  number of e lements  of the  chain,  is  large  then  the 
length of the  chain  may be approximated by 

L Q ( 1  t ,414 p)  n T 
fL 

where p is   the  fraction of the  adjacent  curve  points  which  are  diagonal 
for  the  particular  quantization  method  being  used.  Since p = 0.41 f o r  
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grid-intersect  quantization [ 111 , the  length of a long  chain  is   approxi- 
mately 

L 2  1 . 1 7 n T  

The  height  and  width of a chain  may  also  be  simply  computed. 
The x and  y  components, axi and  ayi, of each  of the  elements ai a r e  
shown a s  follows: 

T 0 
T T 
0 T 

-T T 
-T 0 
-T -T  

0 -T 
T - T  

The  height  is  then  found by subtracting  the  chain' s largest   negative 
deviation  from  the  x-axis f r o m  the  largest  positive  deviation.  Thus, 
the  height  is  given by 

where i = 0, 1, 2 , " '  J n  

and 

where 

Likewise,  the  width of a chain  is  given by 

i E 0, 1, 2 ," '  J n  

i 
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Notice  that i f  Hn = Wn = 0,  then  the  chain is closed. 

The  area  enclosed  by a simple  closed  chain  may  also  be  simply 
computed. It can be  shown that the  area is given by [ 10, 121 

The  area  will  be a positive  number if  the  chain is  traversed  in  the  clock- 
wise  direction,  and a negative  number i f  the  chain is t raversed  in   the 
counterclockwise  direction. 

Many  other  properties of chains  may  also be determined  which 
can be employed  in a pattern  recognition  scherne.  For  instance, it is 
possible  to  determine  the  moments of a chain  about  specified  axes,  the 
location of a chain' s centroid,  and  the  axes ( if any)  about  which a chain 
is symmetric.  [ 121 

Two other  useful  properties  involve  correlation  functions, i. e. , 
autocorrelation  and  crosscorrelation.  The  autocorrelation  function of a 
chain .C ai  may be  defined as  

n 
1 = 1  

n 

f o r  j = 0 ,  - t 1, +2;" + n  

The  product aiai + j is defined  to be the  cosine of the  angle  between 
elements  ai  and ai + j. For  convenience it is assumed  that  the  chain .C ai 
is  periodic,  having a maximum  period of length n. Thus 1 = 1  

ai = ai t kn 

for  k = 0 ,  f- 1, - + 2;*. 

The  autocorrelation  function is therefore  defined  for all j ,  being 
periodic  with  maximum  period of length n. 
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The  crosscorrelation  function of two  chains .C ai and .C bi 
n m 

1 = 1  1 = 1  m a y  be  defined  in  two  ways, 

and 

depending  upon  which  chain  is  shifted.  Here  again,  both  chains  are 
assumed  to be periodic, i. e. , 

for  k = 0 ,  + 1, + 2 , " '  - - 
It is easy  to  see  that  the  crosscorrelation  function  is  also  periodic, 

having  the  same  period as the  length of the  chain  which is being  shifted. 
Thus , 

If both  chains  have  the  same  length ( n = m) , then 

Since  the  autocorrelation  function is not  unique, i. e. , severa l  
patterns  may  possess  the  same  autocorrelation  function, it may  only be 
used  to  place  the unknown pattern  into a c lass  of patterns.   The  cross- 
correlation  functions of the  unknown  pattern  and all the  patterns  within 
this  selected  class  may  then be compared  for  recognition  purposes. 
Generally  the  peak of each  crosscorrelation  function is determined,  and 
recognition is based on  the  pattern  resulting  in  the  maximum  peak.  The 
crosscorrelation  method  has  been  quite  effective  in  fitting a segment of 
a curve  to a larger  curve,  provided  that  the  relative  scale  and  orientation 
a r e  known for  both  curves. [ 151 
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Another  useful  property of chains  for  recognition  purposes is 
the  so-called  directionality  spectrum.  This  consists of tabulating  the 
number of elements of the  chain  having  values 0 through 7. The  direc- 
t ionali ty  spectrum is- then  found  by  multiplying  the  number of odd-valued 
elements  by 4 2 ,  and  drawing a bar  graph of the  results. A normalized 
directionali ty  spectrum  may be obtained by dividing  the  number of 
elements  having  any  given  value by the  total  number of e lements  
( n e  + 4 ~  n o ) .  

A property of chains  which is rotation  invariant is the  curvature 
property. [ 131 The  curvature  function of the  chain -13 a i   i s  defined 

1 = I  

where k is   chosen  to be -1, 0 ,  or 1 s o  that 

The  sequence  ui .+ + is seen  to be the  slope  change ( curvature) of the  chain 

i =  1 
e a i   as   i t   i s   t raversed .  

The  number  and  location of the  zero  crossings of a smoothed 
curvature  function  may  then be used f o r  recognition  purposes. [ 131 
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CHAPTER 111 

NONLINEAR REGRESSION ANALYSIS 

3. 1 Introduction 

This  chapter is concerned  with  the  basic  nonlinear  regression 
method of analysis  that  was  developed  for  the  purpose of landmark 
tracking.  Since  the first class' of patterns  considered are el l ipses ,  
in  section 3. 2 representation of e l l ipse  pat terns   are   discussed.  In 
section 3 .  3 the  parameter  estimation  problem is formulated,  and its 
character is t ics  are delineated  in  sections 3. 3. 1 through 3. 3 .  6. 

3. 2 Representation of the  Ell ipse  Pattern 

The  equation of an  ellipse  whose  major  and  minor  axes  are  co- 
incident  with  the  w-z  coordinate  axes, as shown  in  Fig.  4,is  given by 

g(w,  2) =wz+ 2 2  - 1 = 0 
a' bZ 

( 3. 1) 

or  

whe r e  

c1 = 1 9 

a2 
e 2  = 1 

b2 
( 3 . 3 )  

2a = diameter  of the  ellipse  in  the  w-direction 

2b = diameter of the  ellipse  in  the  z-direction. 

If one  wishes  to  express  the  equation of this  ellipse  with  respect 
to  an  x-y  coordinate  system as shown  in  Fig. 5, the  following  transfor- 
mation  holds 

w = ( x - A )  C O S  8 t (y -B)   s in  8 ( 3 . 4 )  

z =  -( x-A) sin 8 t ( y-B) C O S  8 ( 3 .  5) 

12 



The  equation  for the ellipse  in  the  x-y  coordinate  system  then  becomes 

F( x, y) = g(  w, z )  
w = (x-A)  cos  0 t ( y-B)  sin 0 

z = -  (x-A)   s in  8 t (y-B)  cos  0 

= el  [x-A)  cos 8 t (y -B)   s in  01 + e2[ -( x-A) sin 0 +. (y-B)  C O S  03 - 1  
2 2 

= [e l  cos2 0 + e2  sin2 01 x2+ [ 2( e l   -e2)   cos  0 sin 01 xy 

t [ e l   s in2  0 t e2  cos 01 y2 
2 

t [ -2el  sin e( A cos 0 + B sin 0) t 2e2 cos 0( A sin 8 - B cos  e) ] 

t [ e l ( A c o s  8 +  B s i n   $ e 2 ( A   s i n  0 - B C O S  

- 1  ( 3 .  6 )  

Eqn. ( 3 .  6 )  contains  five  parameters  which  completely  describe  the 
el l ipse.   These  parameters   are   e l   e , ,  A,  By and 0. One notes  that 
Eqn. ( 3 . 6 )  is a nonlinear  function of these  parameters .  

Equation ( 3 .  6 )  may be transformed  into a linear  function of a 
new  set of parameters   via  a nonlinear  transformation of the  parameters.  
To  this  end,  let   the  original  parameters be  denoted  by  the  vector c’ and 
the  new  parameters  by  the  vector 5, i. e . ,  

-. c =  p’” 

and  denote  the  nonlinear  transformation by $ i. e .  , 

? =  ?($) ( 3 - 8 1  

In  order  to  derive  the  nonlinear  transformation of Eqn. ( 3.   8 )  one  may 
rewrite  Eqn. ( 3. 6) as 

where 
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Fig. 4 --Ellipse in   reference  f rame.  

\* 

X 

Fig. 5 --Rotated  and  translated  ellipse. 

Fig.  6 --Relation of 8 and p . -c 
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p , = el cos' e t e2 sin2 e ( 3. 10) 

p = 2( el - e2 )  cos 8 sin 8 (3 .11)  

p ,  = el sin2 e t e2  c o s 2  e ( 3. 12) 

p = - 2A(.e1 c o s 2  8 t e2 sin2 8 ) -2B( el - e2 )  cos 8 s in  8 (3.   13) 

p = -2B( e, sin 8 t e, c o s 2  e )  -2A( e,  -e2) cos 8 sin 8 ( 3. 14) 2 

t 2AB( e l  - e2 )  cos 8 s in  8 (3.   15) 

Eqn. ( 3. 10) -( 3 .  15)   may be manipulated  to  obtain the values of the 
parameters  e l ,  e2 A,  B,  and 8 i n   t e r m s  of the parameters  p , , p z ,  p 
p 4 J  p and p 6 .  F r o m  Eqn. ( 3. IO),  ( 3 .  11)  and ( 3 .  13) 

P 4  = - 2 A  P 1 -  B P Z  ( 3.  16) 

while  Eqn. ( 3 .  11) , ( 3. 12)  and ( 3 .  14)  yield 

P 5 = - A P 2  - 2 B P s  ( 3. 17) 

Solving  Eqn. ( 3 .  16) and ( 3 .  17)  simultaneously  for A and B gives 

A =  - 2 P s  P 4 "  P z  P 5  

4131  P S  - P Z  
2 

( 3 .  18) 

- 2 P 1  p 5  + P 2  p 4  

4 ~ 1  P S  - P Z  

B =  
2 

( 3 .  19) 

F r o m  Eqn. ( 3. 10) and ( 3. 12)  one  obtains 

and 

P 1  4- P s  = e l  + e2 

p , - p 3  = ( e ,  - e 2 ) (  cos e - sin2 e )  2 

= ( e ,  - e Z )  cos 2 8 

( 3. 20) 

( 3. 21) 
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while  Eqn. ( 3. 11)  yields 

p = ( e l  -e2) sin 2 8 

Eqn. ( 3.  21) and ( 3. 22) then  give 

o r  

tan  2 8 = PZ 
P 1 - P s  

e = f tan” PZ 
P 1 - P s  

( 3. 22 )  

( 3.  23) 

( 3.  24) 

If a right  triangle  having  sides of length p and p - is formed,  then  the 
hypoteneuse  has a length d p i- ( p - p  s) as  shown  in  Fig. 6. F r o m  
Fig. 6 it is apparent  that  

s in  2 8 = P 2  

d p z 2  i- ( P I  - P S P ‘  

( 3. 25) 

Then f r o m  Eqn. ( 3. 22) and ( 3.   25)  one  obtains 

( 3.   26)  

and  then  Eqn. ( 3. 20) and ( 3. 26) yield 

e l = f ( P l  + P f + d P P 2  i - ( P 1 - P d 2  ( 3. 27 )  

e2 = f ( p 1  f P s  - J P 2 2  + ( p 1 - p d 2 )  ( 3.  28) 

Since  only  f ive  independent  parameters  are  required  to  fully 
specify  an  ellipse, it is reasonable  to  expect  that  Eqn. ( 3. 9) may be 
simplified.  Dividing  Eqn. ( 3. 9) by ( p6 -1)  gives 

whe r e  

for  i = 1, 2 ,  3,4,  5 ( 3. 3 0 )  
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F r o m  Eqn. ( 3 . 1 8 )  , ( 3 . 1 9 )  , and ( 3.24) one  observes  that  A,  B,  and 8 
are  ra t ios  of the "p parameters  where  both  numerators  and  denomina- 
t o r s  are of the same order.   Thus,  the denominator of Eqn. ( 3. 30) will 
cancel, making  Eqn. ( 3.  18) , ( 3. 19)  , and ( 3. 24) the same function of 
the l1pl1 pa rame te r s  as of the "p parameters .   Therefore  

A =  -2PSP4 t PZP5 
2 

4 P1 Ps  -P2 

B =  -2P, P5 + Pz P4 
2 

4 P1 Ps  -Pz 

( 3 . 3 1 )  

( 3. 32) 

e = 4 tan" PZ 
P1 -Ps 

( 3.  33) 

F r o m  Eqn. ( 3 .  l o ) ,   ( 3 .   12 ) ,   and  ( 3 .   1 5 )  

p 6 = A 2 p 1   + B z p 3 f A B p 2  ( 3.  36) 

Eqn. ( 3. 30) and ( 3 .   3 6 )  then  give 

o r  

( 3.   38)  

Making use  of Eqn. ( 3. 31)  and ( 3.32) further reduces  Eqn. ( 3.  38) t o  
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- - 4 P1 Ps - P z 2  

PI ~5~ + P~P: + PZZ - P Z P ~ P ~  - 4 ~ 1  PS ( 3.39) 

By substituting  Eqn. ( 3. 39) into  Eqn. ( 3. 34) and ( 3. 35) the  parameters 
el and  e2  become  functions  only of the "p" parameters .  

If the  number  found  from  computing  Eqn. ( 3. 39) is  negative  then  the 
expressions  for  el  and  e, as  given by  Eqn. ( 3.40) and 3.41), respec-  
tively,  should be interchanged as seen by referring  to  Eqn. ( 3. 21) , ( 3. 22), 
and (3. 24). 

The  derivation of the  transformation 

( 3.42) 

has now been  completed,  with  the  components + 2 ,  +s, G 4 ,  and +5 given 
by Eqn. ( 3.40), ( 3.4 1) , ( 3. 31) , ( 3. 32) , and ( 3. 33) , respectively. 

It  was  shown  that  an  ellipse  may be expressed as a l inear  func- 
tion of a set  of f ive  parameters   or  as  a nonlinear  function of another  set  
of f ive  parameters as given  by  Eqn. ( 3. 29) and ( 3.6) , respectively. 
The  two  sets of pa rame te r s   a r e   r e l a t ed  by the  transformation  given by 
Eqn. ( 3.8). I t   i s  now appropriate  to  investigate  methods  whereby  the 
unknown parameter   vector   for   an  e l l ipse  may be estimated  after  points 
on  the  ellipse  have  been  measured. 
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3 .  3 Parameter   Es t imat ion   Problem 

3 .   3 .  1 The  Error   Formulat ion 

In  order  to  estimate  the  f ive  parameters  that   represent  the  size 
and  position of the  ellipse  one  may  write  Eqn. ( 3 .  29) or  ( 3 .  6 )  as 

where ( xi,yi)  is 

is the  parameter 

If.  Eqn. ( 

F( xi, yi; 5 0 )  = 0 

any  point  on  the  ellipse  and 

4 50 = k] 
vector  which  characterizes  the  ellipse. 

3. 2 9 )  is used  for  describing  the  ellipse,  then 

( 3. 43 )  

( 3 . 4 4 )  

If one measures  any  point on this  ellipse  and  computes F using 
some  other  parameter  vector,  5 ,  the  value  for F will  not be zero,  but 
rather  it   will be equal   to   an  error ,  E . That i s ,  

F( X i ,  yi ; 5) = €  ( 3. 45) 

Likewise, if  one makes  an  error   in   the  measurement  of a point on this 
ellipse,  then  the  computed  value  for F using  the  true  parameter  vector, 
Go,  is again  non-zero,   representing  an  error,  & . That is, 
- 

F( xi, Y i  ; GO) = E ",.I, - 
( 3 . 4  6 )  

where (xi ,  yi)   i s  now a noisy  measurement point. 
.I,* 

Now as the  boundary of the  landmark  or  the  pattern is t raced,  a 
sequence of coordinates  xi,  yi  become  available.  Given  Eqn. ( 3 . 4  5 )  
and  the  coordinates of the  boundary ( xi,  yi) , i = 1, 2 ,  * , one can 
estimate a vector 5, of the  t rue  parameter   vector  Go. 

4 4 
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The  estimation  will be based  on  minimizing  an  appropriate  func- 
tion of the  error  in  Eqn. ( 3 . 4  5). The  simplest  of these  functions  appears 
to  be  the  sum-squared of t he   e r ro r .  If N points on the  boundary  are 
available,   the  sum-s  uared  error is given  by %r 

i = 1  
( 3 . 4 7 )  

For  convenience,  the  tilde on xi and  yi  will be el iminated  f rom now  on. 
It  will be understood  that  (Xi,  yi)  represent  noisy  measurement  points. 
Let  

( 3 . 4 8 )  

where x', F a r e  N-dimensional  vectors  consisting of the N points  which 
were  measured on the  ellipse  or  landmark  boundary. 

By defining  an N x 1 e r r o r   v e c t o r ,  e 
4 

the   sum-squared  error   may be conveniently  written as  

where T denotes  transposition. 

It should  be  noted  that  the  criterion  function, @, corresponding 
to  the  sum-squared  error  is  dependent  upon  whether F given  in  Eqn. (3 .  49) 
corresponds  to  Eqn. ( 3.6) or to  Eqn. ( 3. 29) .  The  result ing  cri terion 
functions  are  not  identical.  This  point is discussed  in  greater  detail   in 
Appendix 11. 

20 
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3.  3.2 Error   Minimizat ion by Linear  
Regression  Analysis 

When the ellipse is given  by  Eqn. ( 3. 29) then it is a linear  func- 
tion of the  parameter  vector,  6, and  the  minimization of the  sum-squared 
e r ro r   r educes   t o  a s imple   resu l t .   The   e r ror   may be writ ten as 

-c “4 -9 

e = ~ ( x , y ;  p) = ~ ‘ I f t i  ( 3. 51) 

where M is the N x 5 matrix 

and i’ is an  N x 1 vector  containing all 1 I s. Eqn. ( 3. 52) indicates  that 
the  elements of M are  simply  functions of the  measured  points on the 
ellipse. 

The  sum-squared  error ,  4, becomes 

which is a positive  definite  quadratic  form  in  the  coordinates of the trial 
parameter   vector ,   Therefore ,  one merely  needs  to  compute  all of 
the  partial  derivatives of 4 with  respect  to  the  components of 5 and  equate 
them  to  zero  to  find  the  unique  minimum  value of 4. Expanding  Eqn. 
( 3. 53) gives 

$ = ( M a T ( M $ )   t ( M c ) T f t  1 M p t  1 
&T + ‘T -i 

and  therefore 

( 3. 54) 

( 3. 55) 

21 

I 



and 

or  

( 3. 56) 

( 3. 57) 

The matrix M M may  be  inverted,  assuming M is of full  rank,  to  give T 

This  estimate is then  the  "least  squares  estimate" of the  true  parameter 
vector ,  po , and  shall be referred  to  as  the  one  step  minimization  method. -c 

It  should  be  noted  that  the  simple  expression  for Fe as  given  in 
Eqn. ( 3, 58) would  not  have  resulted  had  the  criterion  function  been 
something  other  than  quadratic  in  the  parameter  vector  components, 
since  the  differentiation would have  ,yielded a nonlinear  relation  in  the 
parameter  vector  components. 

If the  parameter  vector,   co , is to be est imated  direct ly   f rom 
Eqn. ( 3.6)  some  other  technique  than  Eqn. ( 3. 58) must  be employed 
since  the  parameters  enter  Eqn. ( 3. 6) in a nonlinear  manner,  making 
the  criterion  function, +I, no  longer  quadratic  in  the  parameters. A 
complete  automatic  computer  algorithm  to  estimate  parameter  vectors 
for   this   sor t  of problem  has  been  developed  by R .  B. McGhee [ 171 and 

* 

be utilized  here.  This  is  an  iterative  minimization  scheme  rather  than a 
one step  minimization  scheme  such  as  was  associated  with  the  l inear 
regression  analysis.  The  essence of this  computer  algorithm is dis-  
cussed below. 

3 .  3. 3 Gauss-Newton  Iteration 

If the  nonlinear  response  vector, F, has its Taylor   ser ies   ex-  
-I 

pansion  truncated  after  the  linear  term 

or  

shall  

(3. 59) 

A 
" 

F ( c ,  t A:) = ? ( T I )  t Z A: (3. 60)  
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whe r e  

+ - m  c = c1 

(3. 61) 

then  the  criterion  function, 4, associated  with  this  response  function is 
A 

+ ( x , y  ; A c'; ?I)  = F F A * 4  L T k  
( 3 .  62)  

where F is defined  in  Eqn. ( 3. 60) and 
1 

A 
+(A c ' )  = ( g t  z A C )  ( e  + z A 7) * T  * 

(3.  63) 

which  is a quadra t ic   form  in  A z. Expanding  Eqn.  (3.  63)  gives 
A 

+ ( A ? ) = e  e + e   Z A G t A c  Z e t A c  Z Z A ;  (3.64) 
+T+ *T *T  T-  -T T 

If Eqn.  (3.64) is differentiated  with  respect  to A and  the  result  equated 
to  zero,   the  minimizing  value of A ?becomes 

I A ? =  
o r  

A Z 1  = - ( Z  Z) Z e 
T -1 T ,  

T 
assuming  that  Z  Z is nonsingular.  The  matrix 

s = z  z T 

(3.  65) 

( 3 .  66) 

(3. 67)  

i s   r e f e r r ed  to  as   the  regression  matr ix   due t o  the  similari ty of this 
method  to  l inear  regression  analysis.   The  normal  equation  for  i teration, 
Eqn.  (3. 65) ,   i s   l inear   in  A T  only  because  function F was  linearized  and 
a quadratic  cri terion  function  was  chosen. 
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Since 

Eqn.  (3.66)  becomes 

The  new  value  for  the  parameter  vector,  c,  then is 
- 

c2  = F1 t A <  

(3. 69) 

(3. 70) 

upon  which a new  i teration  may  then be initiated.  This  procedure is 
r e fe r r ed   t o  as the  "Gauss-Newton."  iteration  method [ 171 . 

As mentioned  previously,  Eqn.  (3. 69) is based on the  assump- 
tion  that  linearizing  function F, Eqn. ( 3 .  59) , is valid.  Since,  in  fact, 
th is   may be completely  invalid, it is quite  possible  that  the  sequence of 
parameter  vector  estimates,   given by  Eqn. ( 3 .  70) , will  not  converge to  
co.  The  necessary  and  sufficient  conditions  for  the  convergence of the 
Gauss-Newton'procedure  may be derived;  however,   the  test   is   generally 
complicated  enough that in  practice one simply  computes +( zi +- pi) at 
each  step  to  see if an  improvement  results.   I t   can be  shown  that  the 
Gauss-Newton  iteration  always  converges  when  binary  scale  factor  ad- 
justment is used [ 171 . When this  technique is used, t i  + 1 is found 
f r o m  

4 

( 3 .  71) 

where k i s   the  first non-negative  integer  which  reduces +. However, 
experimental   results show  that  the  rate of convergence  can be quite  slow. 
For this   reason,  the "modified"  Gauss-Newton  procedure  will  not be used. 
The  Gauss-Newton  iteration  enjoys its greatest   success  as a terminal  
i terative  technique,  where  the  current  parameter  vector is "close"  to  its 
minimizing.  value. 

3. 3.4  Newton-Raphson  Iteration 

When  the  Gauss-Newton  iteration  fails  to  give a reduced  value 
for  the  criterion  function, +, then  direct  gradient  techniques  may be 
appropriate.  This  eliminates  the  necessity of inverting  the  matrix, S ,  
and  also  makes it possible  to  handle  parameter  range  constraints  in a 
straightforward  manner. 
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The  gradient  technique  to be employed is the  method of steepest  
descent,   in  which  case  the  parameter  change  vector,  A c, is direct ly  
proportional  to  the  negative  gradient of the  cri terion  function, +. 

(3. 72) 

where 

k > O  ( 3. 73) 

Thus, A?i is in  the  direction of the  greatest   ra te  of decrease  of +. The 
next  parameter  vector  estimate  then  becomes 

( 3. 74) 

which  may  then be used  to  perform  another  iteration, 

Before  Eqn. ( 3. 72)  can  be  utilized, it is necessary  to   choose 
some  value  for  the  scale  factor, k. The  "Newton-Raphson"  method  may 
be used  to  obtain a value  for k. Essentially it is   based on taking  the 
l inear  portion of the  Taylor  series  expansion of the  cri terion  function, 9, 
and  extrapolating  this  to  zero.  More  precisely,  suppose  that 9 is a 
sufficiently  smooth  function of ? such  that it may be represented  locally 
by the  Taylor  series 

( 3. 75) 

where O(A c2) represents  al l   the  terms  in  the  series  which  are  quadratic 
or   higher   order   in  Ai?. Then  for  small  A?, O( A ? )  may be ignored,  and 

+ ( ? + A ? )  = $(:) t r$ A c  
- T  + 

( 3. 76) 

or  

+ (z t  A 3  E +(?) - k IT+] ( 3. 77) 
0 

using  Eqn. ( 3. 72) .  Extrapolating + t o  zero,   for  which k = k , gives 

( 3. 78) 

o r  

ki = 

( 3.79) 
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The  corresponding  parameter  change  vector, A at each  s ta te  of i t e r a -  
tion is  then,  from  Eqn. (3 .  72) , 

It may  well  be the  case  that   i teration  based  on  Eqn. ( 3.  80) will 
give a value  for 4( I? t A 3  which is larger   than (p( z) . This  simply  means 
that A F i s  s o  large  that   l inear  extrapolation of + to   zero  is ,   in   fact ,  
invalid.  Eqn. (3 .  75) guarantees  that  f o r  some 0 < k < ko the 
criterion  function, (p, will  be  reduced,  however.  Thus it is desired  to 
find  some k = k* such  that 

" 

J- 4. 
Min H G-ki  a+( .'i))= ;i-ki r+( ;i) ) 
k > O  ( 3 . 8 1 )  

The  next  parameter  vector  estimate  is  then 

( 3 .   8 2 )  

This  i teration  scheme  is   called  the  "optimum  gradient  method".  

It is, of course,   not  feasible  to  search  over  al l   values of k on a 
computer,  but it is   quite  feasible  to  perform a binary  search  over  the 
range 

( 3.  83) 

which  may be considered a "suboptimum  gradient  method".  Assuming 
that + is continuous  and r+ # <, Eqn. ( 3. 75) guarantees  that   there  exists 
an n such  that 

and  therefore a binary  search  procedure  a lways  produces a convergent 
sequence of values f o r  9. A simple  algorithm  may be constructed to  
find  the  minimizing  value  for n as  follows. First of all,   compute A $  
f r o m  Eqn. ( 3 .  8 0 ) .  Then,  for n = 0,  1, ' .  * , evaluate 
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Once a value  for n is   reached,   say n = m, such  that 

and 

then  take  for  the  new  value of 2 

( 3. 86) 

( 3.87) 

( 3.88) 

If Eqn. ( 3. 87) is not  satisfied,  continue  increasing n until  Eqn. ( 3.86) is 
again  satisfied  and  then  check  Eqn. ( 3. 87)  once  again.  Continue  this 
until  both  Eqn. ( 3. 86)  and ( 3.87)  are  satisfied.  Eqn. ( 3. 88)  is  then 
the  new  value  for b. 

A fur ther   ref inement   may be incorporated  into  this  algorithm by 
fitting a quadratic  function  to  the  points e-', +? and +? -F1 . Letting 
q-l = & ,  +? = +1 and +im -t = &, it is   s t ra ightforward to  show 
that  the  minimum of this  fitted  quadratic  function  occurs  at 

* 

where 

( 3.89) 

( 3.90) 

( 3.91) 

( 3 .  9 2 )  

I t   i s   necessary  to   place  constraints  on the  parameters  since we 
assume  the  landmark o r  ell ipse t o  be  in  the  field of view.  These  are 
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range  constraints,  in  which each component of the   parameter   vec tor  is 
independently  restricted  to  lie  within  some  specified  interval  on  the 
number  scale.  Thus,  each  component, ci, mus t   sa t i s fy  

where ai and  bi   are the lower  and  upper limits of the allowed  range, 
respectively.   This  then  means  that   the  parameter  vector,   c,   which 
minimizes  the  cri terion  function, 9, must  be in a hypercube  in  parameter 
space. 

-+ 

Considering  the  problem at hand,  one  notes  that  in  order  for  Eqn. 
( 3 .  2) to  represent  an  ell ipse it is necessary   tha t   e l   and   ez  ( o r  c1 and 
c2 ,   respec t ive ly)  be positive.  Likewise,  the  finite  field of view of the 
optical  equipment  places  constraints on el   and  ez   as   wel l   as   the  t rans-  
lations A and B ( o r  c3  and  c4,   respectively).   Since  an  ell ipse is 
symmetric  about its two axes,   the  rotation  angle,  8 = c 5  , may be con- 
strained  to  l ie  in  the first quadrant. 

Since  the  gradient-descent  method  discussed  earlier  is   valid  only 
on the  interior of the  5-dimensional  contstraint  region, R ,  i t  is necessary  
to   use  a different  strategy  when a constraint  boundary is encountered 
during a gradient-descent.  The  method  to be used is called  the  gradient- 
projection  method. If a constraint  boundary  should be encountered,  this 
method  projects  the  gradient  onto  the  constraint  surface  and  then  travels 
in  the  negative  direction of the  projected  gradient  until a minimum f o r  
+ is found.  The  actual  minimum fo r  +I may  e i ther  be located on the 
inter ior  of R or  on a constraint  boundary of R .  In the  lat ter  case  the 
projection of the  gradient  will  have  all of its components  equal  to  zero 
at   the  f inal   i teration. 

The  mechanization of the  gradient-projection  method  may be 
performed  in  three  steps.  

1. Check  each  component of the  current   parameter   vector  
estimate,   c,   to  see  whether it is within  the  allowed  range 
o r  if it l i es  at the  lower o r  upper  end c.f the  range. 

+ 

2. If any  component  lies on e i ther   ex t reme of its range,  and 
if  the  negative of the  corresponding  gradient  component 
points  out of the  constraint  region,  then  set  this  component 
of the  gradient  equal  to  zero.  Leave  all  other  components 
of the  gradient  at   their   true  value.  

3 .  The  result ing  vector,   F+p, is the  desired  projected 
gradient. 
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In  order  to  find  the  optimum  step  size, it is   necessary  to   f ind  the maxi-. 
mum  scale  factor  which  can  be  applied  to - r$ without  violating a 
range  constraint, To this  end,  suppose  that a 4P is positive.  This 
means that Cj can be  reduced  in  value  without  violating a range 
constraint.  Let kj be the largest   scale   factor  that can  be  applied  to  the 
negative  jth  gradient  component  without  violating  the  jth  range  constraint. 
Then kj satisfies 

which  gives 

Likewise,  for  the  negative  components of r$, it follows  that 

( 3 . 9 4 )  

( 3. 9 5 )  

( 3 .   9 6 )  

The  maximum  scale  factor,  ko, is found  from 

ko = Min {k? J 1 ( 3 . 9 7 )  
j 

where  the k'j a r e  defined  only  for  the  non-zero  components of v+p. 
The  maximum  step  size  for  the  parameter  change  vector now 

be come s 

* 
A c ~ =  - ko v+p 4 

( 3 . 9 8 )  

This  value  may  then  be  used as the  maximum  step  size  for  the  binary 
search  procedure  discussed earlier. 
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3 . -3 .6  Global  Optima 

Both the Gauss-Newton  method  and  the  Newton-Raphson  method 
are   sui ted  for   determining  local   minima  s ince  they  make  use  only of 
local  information. If more  than one minimum is contained  within  the 
constraint   region,  R,  then it is desirable  to  find  the  smallest of all of 
these  minima.  Such a minimum is called a global  minimum. Of course,  
the  only  way  to  find  the  global  minimum  with  certainty is to  exhaustively 
search  the  entire  constrained  parameter  space.   Since  this is not  feasible 
or   pract ical  on a computer,  one  must  choose  some  method  whereby a 
given  confidence  level is attained  that  the  minimizing  parameter  vector 
obtained is associated  with a value of + which is smaller  than  some 
specified  per  cent of the  points  in R .  Such a method is that of uniform 
random  searching  in  which  parameter  vectors  are  chosen  at   random 
(wi th  a uniform  distribution  for  each  component)  and  their  correspond- 
ing cri terion  functions  are  evaluated,  The  parameter  vector,  c', being 
associated  with  the  smallest  value  for + is  then  used  to  initiate a local 
minimization [ 171 . 
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CHAPTER IV 

RECOGNITION O F  ELLIPTICAL PLANAR PATTERNS 

4. 1 Introduction 

This  chapter is concerned  with  the  recognition of elliptical  planar 
patterns.  By  the  term  "recognition" it is  meant  that  the  two  minimization 
techniques  which  are  discussed  in  Chapter 111 are  employed  to  estimate 
the  f ive  parameters  associated  with  an  ell ipse  having  arbitrary  size and 
shape, as  well as arbitrary  posit ion  ( translation  and  rotation)  in  the 
planar  field of view. 

Section 4. 2 discusses  the  statement of the  problem  and  the  general 
approach  which is to be pursued,  while  section 4. 3 discusses   the  var i -  
ous  parameters  which  are  associated  with  the  implementation of the  two 
minimization  scheme s. 

The  results  which  were  obtained  from  the  two  minimization 
schemes  are  discussed  in  section 4. 4, and a summary of the  advantages 
and  disadvantages of the  two  methods is contained  in  section 4. 5. 

4. 2 Statement of Problem 

The  parameter  estimation  schemes  were  f irst   applied  to  the 
recognition of elltptical  patterns.  Elliptical  patterns  were  selected 
f i rs t   because  they  are  a somewhat  complex  pattern  and  yet  their  boundary 
may be represented  analytically.   Furthermore,   most of the  ground  work 
for  the  estimation of the  parameters of an  ellipse  has  been  laid  in 
Chapter 111. 

A s  was  discussed in  Chapter 111, an  ellipse,  located  in a plane, 
may be fully  characterized by five  parameters.  Two parameters ,   e l  
and e2,  are  necessary  to  specify  the  size  and  shape of an  ellipse,  while 
th ree   parameters   a re   necessary   to   spec i fy  its position  and  orientation 
in  the  plane.  Figure 7 shows a typical  ellipse  which  has  been  translated 
and  yotated  with  respect  to  the  reference x, y-coordinate  system. 
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Fig.  7--Parameters of .an ellipse  in  the x, y-reference 
frame. 

With  respect  to  the w, z-coordinate  system,  this  ellipse  may be expressed 
analytically  by  Eqn. ( 4 .  1) 

e l w 2  + e 2 z 2  = 1 ( 4 . 1 )  

where 

1 el  = - and  e2 = 1 2 
rW r 2  Z ( 4 . 2 )  

The  parameters rw and rz  are  respectively  called  the  w-axis  radius  and 
the  z-axis  radius of the  ell ipse.   The  parameters  which  are  actually 
es t imated  are   e l   and  e2,   which  are   re la ted  to  rw and rz  by  Eqn. ( 4 .  2 ) .  
The x and  y-translation  parameters  are  denoted by A and B, respectively, 
and  the  rotation  parameter is denoted  by 8. These   parameters   a re   a l l  
shown  in  Figure 7. 

c =  
+ 

It  is,  then,  the  intent of this  chapter  to  determine  the  feasibility 
of recognizing  an  elliptical  planar  pattern by estimating  i ts   associated 
parameter  vector ?, and  to  determine  whether  the  one  step  minimization 
method  or  the  iterative  minimization  scheme  does  the  better  job of per -  
forming  this  parameter  estimation  task.  
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4. 3 Implementation of the   Parameter  
Estimation  Schemes 

To  simulate  an  ell ipse  in  the  f ield of view, points  which  lie on 
the  boundary of an  ellipse areartificiallygenerated by the  subroutine 
denoted  by DATA. The  logic by  which  this  subroutine  selects  the  data 
points is discussed  in  Appendix I. After  the  subroutine DATA is pro-  
vided  with  parameter  vector To, it generates data points  which  lie  on 
the  boundary of an  ellipse  which is characterized by coo. This  parameter 
vector  was  arbitrari ly  chosen  to be 

0 .  50 ( 4. 4) 

This  corresponds  to an ellipse  which  has a w-radius  and a z-radius  equal 
to 1. 0 and 2. 0 ,  respectively.  In  addition,  the  ellipse  has  been  translated 
one  unit  in  the  x-direction  and two units  in  the  negative  y-direction,  and 
rotated 0. 5 radians. 

Thus,  in  the  absence of measurement  noise,  one  would  expect 
the  estimate  for  ?to be exactly z0. 

While  the  parameter  vector zo was  held  fixed,  two  other  parameters 
were  varied  to  determine  their   effect   on  the  accuracy of the  parameter 
estimation  schemes. 

One of these  variable  parameters  was  the  number of data  points 
which  were  used to  represent  the  boundary of the  ellipse.  Ten  data 
points  were  chosen  for a sparse  distribution of points on the  boundary, 
while  one  hundred  data  points  were  chosen  for a dense  distribution of points 
on  the  boundary.  htermediate  values  for  the  number of data  points  were 
chosen as 20 and 50. 

The  other  variable  parameter  was  the  amount of noise  which  was 
added  to  the  data  points  to  simulate  the  effect of measurement  noise  or 
other   errors .   The  noise   samples ,   which  are   generated  on  the  digi ta l  
computer,  have a gaussian  distribution.  The  mean  and  standard  deviation 
of these  noise  samples  may be independently  specified.  In  all  cases  the 
mean was  chosen  to be zero,  while  the  standard  deviation  was  either 
0 . 0 ,  0. 1, 0. 2, 0. 3 ,  0.4, o r  0. 5. The  maximum  value  for  the  standard 
deviation of the  noise  sample, 0. 5, was  one-half of the  z-radius of the 
noiseless  ellipse.  Noise  samples  having a standard  deviation  larger  than 0. 5 
result  in  the  data  points  having  such a large  scatter  that  they  no  longer  even 
remotely  resemble  the  boundary of an  ell ipse.   In  fact ,   physical   systems 
which  correspond  to  the  higher  values of standard  deviation ( 0. 3-0. 5 )  
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would  have  limited  practical  utility,  but it is of interest   to  investigate 
the  reliability of the  parameter   es t imat ion  schemes  for   high  noise   levels ,  
and  to  develop  bounds  on  the  performance of such  systems.  

The  pattern  which is to  be recognized is required  to  lie  within 
some  bounds  since  in a physical  situation  the  optical  system  would  have 
a finite  field of view.  The  field of view  was  arbitrari ly  chosen  to be a 
square  measuring  eight  units on a side.  The  boundary of the  ellipse 
which is characterized  by  the  parameter  vector Eo given by Eqn. ( 4. 4) 
lies  entirely  within  this  field of view. 

A remark  should be made  at  this  point. If the  noise  which  is  added 
to  the  data  points  has a large  standard  deviation, it is possible  that  some 
of the  resulting  noisy  data  points  will  fall  outside of the  field of view. 
When this  si tuation  arises,   those  noisy  data  points  which fall outside of 
the  field of view are  st i l l   regarded  as  valid  data  points  in  the  simulation. 
Physically,  in  an  actual  landmark  tracking  or  automatic  docking  situation, 
noise  may be classified  into  two  general   categories.   The  f irst   category 
consists of noise  associated  with  measurement  errors.   These  include 
g r i d  quant izat ion  errors ,   detector   or   sensor   errors ,   and  t ransmission 
e r r o r s .  In any of these  cases  the  coordinates of a data  point  (which  is  in 
the  optical  field of view)  will be in   e r ro r ,   and  if  the  true  data  point is near  
the  boundary of the  field of view  then it is possible  that  the  noisy,  or 
measured,  data  point wi l l  have  coordinates  which  lie  outside of the  field 
of view.  This  situation  is  contrasted  to  the  second-category  into  which 
noise  may be classified,  which  may be termed  "masking"  noise  for  lack 
of a better  name.  This  kind of noise  corresponds  to a case  in  which  the 
field of view is partially  covered  with  clouds  or  to a case  in  which  the 
optical   system is very  badly  out of focus.  The  sensor  will be  unable  to 
detect  the  data  points  which  are  masked,  or  obscured,  due  to  either of 
these  situations,  and  therefore  these  data  points  are  in  essence,  discarded. 
This  masking  noise  has  the  effect,  therefore, of shrinking  the  field of 
view. 

Thus, it can be seen  that  the  noise  which is being  simulated  cor- 
responds  to  measurement  noise  rather  than  "masking"  noise.  

The  numerical  values  utilized  in  simulation  experiments  for  the 
range  constraints  for  the  f ive  ell ipse  parameters  are as  follows: 

-4.0 < A < 4.0 
-4.0 2 B  7 4.0 
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These  range  constraints  permit  the  fitted  ellipse  to  have  either of its 
radi i   range  in   s ize   f rom  1/4 unit to 4 units (i. e. , the maximum diameter  
is constrained  to  be  no  larger  than  the  dimensions of the  field of view). 
In addition,  the  center of the  fitted  ellipse is permitted  to  lie  anywhere 
within  the  field of view,  while the rotation  angle is constrained  to  lie  in 
the first quadrant  due  to  the  syrnmetry of an  ellipse. 

The  es t imat ion  process   has   to   be  s tar ted  with  an  arbi t rary  ini t ia l  
parameter  vector,   ce.   The  init ial   guess  for  the  parameter  vector  was -5 

0. 5 

= [K] 
which  corresponds  to  an  ellipse  having a w-axis  radius  and a z-axis 
radius  equal  to 1. 414 and 0. 877, respectively.  The  parameter  vector Te 
was  chosen  such  that  its  components  were  "closeI1  in  value  to  the  com- 
ponents of Eo and  yet  not s o  c lose  as  to  make  the  estimation  problem 
trivial .  

After  performing a local  minimization  using Ze as  the  initial 
es t imate   for  F0, four  more  local  minimizations  are  executed  with  the 
initial  estimate  in  each  case  being  found by  the RANSER ( random  search)  
subroutine. [ 171 Thus, a total of five trial local  minimizations  are 
carried  out,  The  number of random  searches  for   each trial local  minimi- 
zation  was  set  equal  to 100. 

4. 4 Results 

Both  the  one  step  minimization  method  and  the  iterative  minimi- 
zation  scheme  which  are  outlined  in  Chapter 111 were  employed to  es t i -  
mate   the  parameters  of the  given  ellipse.  The  results  which  were  obtained 
by using  these  two  schemes  are  shown  in  Tables 1 and 2, respectively. 
It  should be  pointed  out  that  the  data  points are  exactly  the  same  for  both 
minimization  schemes,  permitt ing a meaningful  comparison t o  be made. 
The  results  which  are  tabulated  in  Table 2 a r e   a l s o  shown  pictorially  in 
Figures  8,  9,  10,  11,  12,  and 13. In these  figures  the  ellipse  having 
a solid  line  boundary  corresponds  to  the  parameter  vector 2,. The 
symbols  correspond  to  the  noisy  data  points  arising  from  the  solid  line 
boundary.  The  ellipse  which is fitted  to  these  noisy  data  points,  and 
characterized  by ze, is represented by  the  dashed  line  boundary.  The 
x and  y-radii  correspond  to  the  w-axis  and  z-axis  radii,  respectively. 
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A comparison of Tables 1 and 2 shows that for  noise  levels  below 
u = 0. 4 the  two  minimization  schemes  produced  results  which  were  quite 
s imilar .   Referr ing  to   these  tables   or   to   Figure 8 one  notes  that   for 
noiseless   data   points   the  parameter   vector  is est imated  precisely,   that  
is, ce = co.  This is a cri terion  which  any good recognition  scheme 
should  fulfill, of course.  

+ +  

Figure 9 shows  the  results  which  were  obtained  for u = 0. 1. 
Special  note  should be made  concerning  the  accuracy  with  which  the 
rotation  component of the  parameter   vector   was  es t imated.   I t  is seen 
tha t   the   l a rges t   e r ror  is less   than 3 degrees,   while  for  three of the  four 
cases   t h i s   e r ro r  is considerably  less  than  one  degree. 

A brief  comment  concerning  the  expression f o r  the  error   should 
be  made  at  this  point.  In  most  instances it is more  convenient  and 
meaningful  to  express  an  error  in  percentage  rather  than  absolute  terms. 
Such is the  case  here.  Since  an  ellipse is symmetric  about  both its 
vertical   and  horizontal   axes,  its angular  position  is  unique  only  in  the 
first quadrant, i. e .  , 0 to 90 degrees .   The  percentage  error   may  then 
be defined  as  the  ratio of the  absolute   error   to  90 degrees .  With  the 
percentage   e r ror  so  defined,  one  can  see  that  for u = 0. 1 the  maximum 
er ror   i s   approximate ly   th ree   percent   for   the   ro ta t ion   parameter ,   which  
is  quite good considering  the  fact  that  the  reference  rotation  angle is not 
constrained  to  be  small, 

The  results  for u = 0.2 a r e  shown  in  Figure 10. Here  again one 
notes  that   the  error  in  estimating  the  rotation  parameter is quite  good. 
In  fact,  ignoring  the 10 data  point  case,   the  maximum  error is s t i l l   l ess  
than  three  percent.  In the 10 data  point  case  the  error is approximately 
seven  percent,  which is st i l l   reasonable  considering  the  scarcity of data 
points  and  the  noise  level.  Another  observation  which  can be made   f rom 
both  Figures 9 and 10 is that  the  estimates  for  the  parameter  vector  become 
bet ter   as   more  data   points   are   used,  a situation  which  intuitively  seems 
reasonable. 

When the  noise  level  reaches u = 0. 3 ,  a s  shown  in  Figure  11, 
the  fitted  ellipses  begin to  differ f r o m  the  reference  ell ipses  to a l a r g e r ,  
and  perhaps  unacceptable,  extent.  The  scatter of the  data  points  is  such 
that  an  accurate f i t  cannot be realized by ei ther  of the   parameter   es t i -  
mation  schemes.  However, it should  be  pointed  out  that  the  estimate f o r  
the  rotation  parameter  is   st i l l   respectable,   except f o r  the 10 data  point 
case.  In the  other  cases  the  maximum  error  in  the  rotation  parameter 
es t imate  is less  than  nine  percent,  and f o r  the 100 data  point  case  this 
e r r o r  is approximately  three  percent  (for  the  i terative  minimization 
scheme) .  
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For  higher  noise  levels (U = 0. 4 and 0. 5 ) the one s tep  minimiza-  
tion  method  runs  into  serious  difficulties.  Table 1 shows  two  instances 
in  which  the  one  step  minimization  method  was  unable  to f i t  an  ellipse 
to  the  data  points. In  both of these  instances  the  estimate be was found 
to  have  one of i t s   f i r s t  two  components a negative  number.  This  means 
that  the one step  minimization  method  actually f i t  a hyperbola  to  the 
given  data  points  rather  than  an  ellipse. 

For  relatively  high  levels of noise (U = 0. 4 and 0. 5 )  Table 2 
shows  that  the  iterative  minimization  scheme  also  exhibits  an  undesirable 
character is t ic ,   that  is, it has a tendency  to  select  values  for  the first 
two  components of  c'e which  are  at  the  boundary of their   respective  range 
constraints.  When  this  is  the  case  the  resulting  fitted  ellipse  is  actually 
a circle  having a radius  equal  to  four  units,  as  shown  in  Figures 1 2  and 
13. These  figures  indicate  that  the  iterative  minimization  scheme  has 
attempted  to  cluster  all of the  data  points  along  a  small  portion of the 
boundary of the  fitted  ellipse ( or   c i rc le) ,   wi th   approximately one  half 
of the  data  points on either  side of the  fitted  ellipse' s boundary. 

4. 5 Summary 

This  chapter  has  investigated  the  merits of "recognizingJJ a planar 
elliptical  pattern,  whose  boundary  points  are  given, by estimating  the 
values  for  the  five  parameters  which  characterize  an  ellipse.  The 
parameter  estimation  schemes  which  were  employed  are  the  two  which 
were  described  in  Chapter 111, namely,  the one step  minimization  method 
and  the  iterative  minimization  scheme.  The  ellipse  which  was  to be 
recognized  was  permitted  to  have  arbitrary  size  and  shape,  as  well  as 
arbitrary  posit ion and  orientation so long as  it  was  located  within  the 
specified  field of view. 

A s  was  pointed  out  in  Section 4. 4, the two minimization  schemes 
provided  essentially  the  same  results f o r  the  estimate of the  parameter 
vector  associated  with  the  reference  ellipse  when  the  noise  level  was 
below u = 0. 4. For  the  lower  noise  levels ( IT = 0. 0 ,  0. 1,  and 0.2) these 
estimates  were  quite  good,  and  special  note  was  made  concerning  the 
accuracy  with  which  the  rotation  parameter  was  estimated.  Excluding  the 
10 data  point  case  for u = 0.2,. the  rotation  parameter  was  never  more 
than  three  percent in e r r o r ,  which is a remarkable  result.  Unfortunately, 
no  other  schemes  exist  presently  with  which  these  results  can be compared. 

F o r  IT = 0. 3 the  estimate f o r  the  rotation  parameter  was  still  
respectable,  but  the  other  parameters  were not estimated  accurately 
enough  to  yield  a  fitted  ellipse  which  approximated  the  reference  ellipse 
to  an  acceptable  degree. 
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Both  minimization  schemes  displayed  undesirable  characterist ics 
for  very  high  noise  levels ( cr = 0.4 and 0. 5). The  one  step  minimization 
method  had a tendency  to f i t  a hyperbola  to the data  points  rather  than 
an  ell ipse  (characterized  by a negative  value  for  one of the first two 
components of the parameter  vector)  while  the  i terative  minimization 
scheme  had a tendency  to f i t  a constrained  ellipse  to  the  data  points 
( rw = rz  = 4 . 0 ) .  

The  fact  that  both  minimization  schemes  failed  to  accurately 
estimate  the  parameters  associated  with  the  reference  ell ipse  for  high 
noise  levels  does  not  distract   from  their   usefulness.  In practice one 
would regard  a system  corresponding  to a- = 0. 3 ,  0.4 and 0. 5 a s  having 
an  unacceptable  level of noise  and  hence  would  demand a better  design 
for  the  system. Upon viewing  Figures 5, 6, and 7 one sees  that  it would 
be very  difficult, i f  not  impossible,  to  develop a recognition  scheme  that 
could  accurately  recognize  an  ellipse  from  the  given  scatter of data .  
points  ( this  includes a human  being as a "pattern  recognizer").  

A s  a minor  point, it should  be  mentioned  that  the  undesirable 
character is t ics  of the  two  minimization  schemes  (for  high  noise)  which 
were  previously  mentioned  can  be  corrected  to  some  extent.  The  itera- 
tive  minimization  scheme  can be improved if the  range  constraints on 
the first two  components of ?e are   fur ther   res t r ic ted  af ter   the   data   points  
become  known,  One  simple  procedure  is  to  construct a rectangle,  having 
sides  parallel   to  the  x,y-axes,   that   encloses  all   the  data  points  and that 
has  at  least one data  point  lying  on  each of its sides. One  would  expect 
the  fitted  ellipse  to  have  neither of i ts   diameters  larger  than  the  diagonal 
of this  "bounding"  rectangle.  Thus,  the  two  radii  are  constrained  to be 
no  larger  than  one half of this  diagonal,  and s o  the  lower  bounds on the 
range  constraints  for  the first two  components of Ze are  modified  accord- 
ingly. 

For the  one step  minimization  method,  constraints  could be speci-  
fied so  that  the  fitted  pattern is forced  to be an  ellipse,  However,  the 
simplicity of the  one step  minimization  method  involved  the  fact  that it 
was  an  unconstrained  minimization  scheme.  Since  the  unconstrained 
one step  minimization  method  was  unable  to  always  fit  an  ellipse  to  the 
data  points  (and  for  reasons  given  in  Chapter V)  the  iterative  minimiza- 
tion  scheme  was  considered  the  better  scheme  and  was  used  for  the 
recognition of elliptical  patterns  as  well as  for  patterns  that  are  not 
ellipses. 

Another  point  which  might  be  noted  concerning  the  one  step 
minimization  method is that  this  scheme  tends  to  estimate  the  larger 
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radius ,  rx, much  less  accurately  than.the  smaller  radius,  ry. This 
can be seen  in  Table 1. This is not  a property of the  iterative  minimi- 
zation  scheme,  however,  giving  more  support f o r  its  use. 
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TABLE 1: ELLIPSE  PARAMETER  ESTIMATES  OBTAINED BY 
ONE STEP MINIMIZATION  METHOD 

(r - 

0.0 
0.0 
0.0 
0.0 

0. 1 
0 . 1  
0 . 1  
0. 1 

0. 2 
0. 2 
0. 2 

0 0 . 2  

0. 3 
0. 3 
0. 3 
0. 3 

0 . 4  
0 . 4  
0 . 4  
0 . 4  

0. 5 
0. 5 
0. 5 
0. 5 

P 

N - 
10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

rx = 2.0 

e1 - 
0. 250035 
0. 249987 

0. 250081 

0. 226588 
0. 247 580 
0. 230059 
0. 240472 

0. 249962 

0. 250661 

0. 245096 
0.  20 5477 

0. 222750 

0. 122579 
0.  241930 
0. 187579 
0. 141655 

0. 15631 1 

0.029652 
0.037682 

>k 

0.081115 
0. 137709 

0.0751 27 

X< 

X C  Unable   to  f i t  e l l i p s e ,  

ry  = 1 . 0  

- e2 

1.000063 
0. 999831 
1.000428 
1.000  146 

0.98  5690 
1.019186 
0. 966594 
1.021042 

1 .091854 
0.870532 
1.081746 
1. 104007 

1. 141891 
1.038012 
0. 965065 
0.976113 

0. 662240 
1. 751601 
0.997244 

0. 644221 
0. 967893 

1.015188 

A - 

0.999918 
0.999987 
1.000113 
0.999886 

1. 1 3  3 521 
0.986980 

0.960186 
1.061  745 

1.046996 
1.019036 
1.029216 
0. 993413 

0. 510788 
1. 264826 
1.005195 
0.911619 

0.965569 
0. 351396 
3.4041  36 

2. 139103 
0. 618680 

1.068787 

B - 

-1.999968 
- 2.000008 
- 2.000046 
- 1.999961 

-2.017937 
-2.036948 
-2.000900 
-1. 995705 

-1 .  926707 

-2.026368 
- 2.167258 

-2.054868 

-2.  504557 
-1.812599 
-2.067051 
-2.  123045 

-1. 958783 
-2.  735868 
-1.132561 

-1. 733687 
-2.  566473 

-2.  383365 

e - 
0.499943 
0.499964 
0. 500288 
0. 499766 

0. 505674 
0. 500796 
0. 545271 
0. 504009 

0. 610062 
0. 457618 
0. 482127 
0. 527154 

0. 728425 
0. 547318 
0 ,611433 
0. 518779 

0. 386650 
0.661454 
0 ,461   635  

0. 542781 
0. 499484 

0. 507140 

rX 

2.000 
2.000 
2.000 
2.000 

2.101 
2.0  10 
2.085 
2.039 

1 .997  
2. 206 
2. 020 
2.119 

2. 856 
2.033 
2. 309 

- 

2. 657 

2. 529 
5. 151 
5. 807 

3. 511 
2 . 6 9 5  

3. 648 

1 
1.000 
1.000 
1.000 
1.000 

1.007 
0.991 
1.017 
0.990 

0 .957  
1 .072  
0.961 
0.952 

0.936 
0.982 
1.018 
1.012 

1.229 
0.756 
1 , 0 0 1  

1.246 
1 .016  

0 .992  



TABLE 2: ELLIPSE PARAMETER  ESTIMATES  OBTAINED BY 
ITERATIVE  MINIMIZATION  SCHEME 

(r - 
0.0 
0.0 
0.0 
0.0 

0. 1 
0. 1 
0. 1 
0. 1 

0. 2 
0. 2 

2 0. 2 
0. 2 

0. 3 
0. 3 
0. 3 
0. 3 

0. 4 
0. 4 
0. 4 
0. 4 

0. 5 
0. 5 
0. 5 
0. 5 

N 

10 
20 
50 

100 

- 

10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

10 
20 
50 

100 

rx = 2.0  

e, 
. 25000 . 25000 
. 25000 . 25000 

. 23309 . 25481 

. 24045 

. 25103 

. 26219 

. 23523 

. 28036 

. 26151 

, 17273 . 32107 
. 23160 
, 22484 

. 16435 

,06250 
,06250 

. io609 

,06250 
.06250 

. 20 117 

. 26380 

ry = 1 . 0  

ez 
1.. 00000 
1.00000 
1 .00000 
1.00000 

0. 91828 

0. 90386 
0.95177 

0.98635 

0.86192 
0.86500 

0.97564 

0.65429 

0. 78372 

0.65681 
0. 62374 

0.60177 

0. 53921 
0. 74273 
0.06250 
0.06250 

0. 55384 

0.06250 
0.44969 

0.06250 

A - 
1.00000 
1 ,00000  
1.00000 
1.00000 

1. 12770 
0. 98513 
1.05204 
0. 95558 

1.04461 
0. 99513 
1. 02352 
0.97935 

0. 56804 
1. 13235 
0. 99362 
0. 88051 

0.80733 
0. 79921 

-0. 55830 
-1. 12144 

1. 85071 
0 ,74672 

-0.04203 
-1.  35350 

B - 
-2.00000 
-2.00000 
-2.00000 
-2.00000 

-2.00796 
-2.03016 
-1.99382 
-1.98589 

-1.91310 
-2.  13235 

-2.01866 
- 1.98737 

-2.  39295 
-1.81673 
- 1.99064 
-2.01215 

-1.93123 
- 2 .  26838 

1.00064 
1.08820 

-1. 87407 
-2.  38593 

1. 33321 
0.90174 

0 - 
0. 50000 
0. 50000 
0. 50000 
0. 50000 

0. 50372 
0. 50099 
0. 54868 
0. 50581 

0. 60783 
0. 46806 
0. 49220 
0. 54554 

0.80087 

0. 63811 
0. 54895 

0. 30713 
0. 70981 
0. 11 353 
0. 12380 

0.61739 

0. 49956 
0.64307 
0. 13402 
0. 14893 

2 

2.000 
2.000 
2.000 
2.000 

2.071 
1.981 
2.039 
1.996 

1. 953 
2.062 
1.889 
1.955 

2. 406 
1.765 
2.078 
2. 109 

2.467 
2. 230 
4.000 
4.000 

3.070 
1.947 
4.000 
4.000 

4 
1.000 
1.000 
1,000 
1.000 

1.044 
1.012 
1.052 
1.025 

1. 007 
1. 236 
1.077 
1.075 

1. 130 
1. 266 
1. 234 
1. 289 

1. 362 
1. 160 ~ 

4.000 
4.000 

1. 344 
1. 491 
4.000 
4.000 

t Note :   Reference   e l l ipse   parameters  are: e l  = 0. 25, e 2  = 1.00, A = 1. 00,  B = 2.00, 8 = 0. 50 
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CHAPTER V 

THE  RECOGNITION O F  RECTANGULAR  PLANAR PATTERNS 

5. 1 Introduction 

The  objective of this  chapter is to  investigate  the  feasibility of 
employing  either  or  both of the  estimation  schemes  which  are  discussed 
in  Chapter I11 to  recognize  rectangular  planar  patterns.  Again, by the 
term  "recognition" is meant  the  estimation of the  f ive  parameters  which 
character ize  a rectangle  having  arbitrary  size  and  shape, as well a,s 
arbitrary  posit ion  ( translation  and  rotation)  in a planar  field of view. 

In  Section 5. 2 the  statement'of  the  problem is formulated  and  the 
recognition  strategy  which w i l l  be investigated is discussed.  The  results 
which  are  obtained  from  the  two  minimization  schemes f o r  rectangles 
having  known  parameter   vectors   (no  noise)   are   then  analyzed  in   Sect ion 
5. 3 .  

The  iterative  minimization  scheme  is  employed  in  Section 5.4 to 
es t imate   the  parameters   associated  with  rectangles   whose  boundary 
points  are  corrupted  with  noise,  and  the  results  using  this  scheme  are 
discussed.  Finally,  Section 5. 5 contains a br ief   summary of the  resul ts  
and  conclusions  which  have  been  reached  in  this  chapter. 

5. 2 Statement of Problem 

In order  to  further  test  the  recognition  techniques  developed f o r  
ell iptical   objects,  a second  class of patterns  was  considered.  Rectangu- 
lar   pat terns   were  chosen f o r  this  purpose  because  they  are  simple  geo- 
metric  patterns  and  yet do  not  possess a simple  analytic  representation. 
Fu r the rmore ,  a rectangle  has  several   properties  in  common  with  an 
ellipse.  Both of these  pat terns   are   convex,  and  both a re   symmet r i ca l  
about two orthogonal  axes.  Thus, a rectangle   may be character ized by 
a se t  of f ive  parameters   in  a manner  quite  similar  to  an  ell ipse.   Figure 
14  shows a rectangle  which  has  been  translated  and  rotated  with  respect 
to  the  x-y  coordinate  system.  This  rectangle is character ized by its 
w-axis  radius R, and z-axis   radius  R,, and  by  the x- and  y-translation of 
i t s   cen te r   (A '  and B' , respec t ive ly) ,   as   wel l  as by  its  rotation 8' . 
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Fig.  14"Parameters of a rectangle  in  the  x,  y-reference  frame. 

Therefore,   the  parameter  vector  characterizing a rectangle  may be 
expressed as 

-E' = [;:I 
The  strategy  which was  used  to  recognize  rectangular  patterns 

was  to  present a number of different  size  and  shape  rectangles  to  both 
the  one  step  minimization  method  and  the  iterative  minimization  scheme, 
and  to  determine  what  relationship, if any,  existed  between  the  parameter 
vectors  of the  fitted  ellipses  and  the  parameter  vectors of the  correspond- 
ing rectangles.   This  strategy  is   motivated by  the  fact  that  the  noiseless 
data  points  which  lie on the  boundary of a rectangle  may be considered as 
being  noisy  data  points  which  originally  belonged on the  boundary of some 
ellipse. If a relationship  can be found  between  the  parameter  vectors of 
the  fitted  ellipses  and  the  parameter  vectors of the  corresponding  rec- 
tangles,  then it will be possible  to  compute  the  parameter  vector of an 
unknown rectangle  after  the  parameter  vector of its associated  fitted 
ellipse is determined. 

5. 3 Parameter   Est imat ion  for   Noise-  
Free  Rectangular   Pat terns  

The  results of using  the  one  step  minimization  method  to  recognize 
a rectangle   are  shown  in  Tables 3 ,  4, 5, and 6. Each  table  corresponds 
to a different  number of data points on  the  boundary of the  rectangle, 
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the  number of data  points  being 8, 20, 48, or  100,  respectively.  These 
data  points  were  generated  by the DATA subroutine  which is described 
in  Appendix I. 

A total of twenty  rectangles  were  to  be  recognized.  Ten of the 
rectangles  have a w-axis  radius  equal  to  one  unit of length,  with  the 
z-axis  radius  varying  from 0. 1 to  1. 0 units of length in increments  of 0. 1. 
The  other  ten  rectangles  are  exactly  twice  the  dimensions of the first 
ten.  The  translation  and  rotation  parameters of the  rectangles  were 
chosen  to be the  same as those  which  were  used  for  the  ellipse  which 
was  discussed  in  Chapter IV. Thus 

c; = x-translation = A' = 1. 0 
c: = y-translation = B1 = - 2. 0 
cL, = rotation  in  radians = 8'  = 0. 5 ( 5. 2 )  

In  the  tables  the  radii of the  rectangles  are  denoted  by R while 
the  radii of the  fitted  ellipses  are  denoted by r. The  radii  of the  fitted 
e l l ipses   a re ,  of course,   re la ted  to   the first two  components of their  
characterizing  parameter  vector,  ?, by  Eqn. ( 5. 3).  

Inspection of Tables 3 ,  4, 5, and 6 indicates  that  the  one  step 
minimization  method is not  very  effective  in  recognizing  the  rectangles. 
For  the  most  part   the  translation  and  rotation  parameters of the  fitted 
ell ipses  are  quite  close  in  value  to  the  corresponding  parameters of the 
given  rectangles.  However,  there is no  recognizable  correspondence 
between  the  w-axis  and  z-axis  radii of the-fi t ted  ell ipses  and  the  respec- 
tive  radii of the  rectangles. 

A r e m a r k  should be made at this  point  regarding  the  results 
which  one  would  intuitively  expect  to  obtain. First of all,   since  an  ellipse 
and  rectangle  have  similar  geometric  properties ( convexity  and  symmetry 
abouL two orthogonal  axes)  one would expect  that  the  known  rectangles 
and  the  corresponding  fitted  ellipses would have  identical  coordinates  for 
their   centers ,   as   wel l  as identical  rotation  angles. On the  other  hand, 
it is difficult  to  predict  the  exact  relation  between  each  radius of a known 
rectangle  and  the  corresponding  radius of the  fitted  ellipse.  However, 
again  due  to  symmetry, one  would  expect  that  the  ratio of the  radii of a 
fitted  ellipse would  be nearly  equal  to  the  ratio of the  radii of the  cor- 
responding  known  rectangle,  being  more  or  less  independent of the  rec-  
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tangle' s size.  The one step  minimization  method did not  possess  this 
property,  however. If a recognition  scheme  does  have  this  property, 
then  the  constant of proportionality  relating  the  size of the  rectangle  to 
the  size of the  corresponding  fitted  ellipse  may be determined  experi-  
mentally. 

Another  weakness of the  one  step  minimization  method  is  that it 
i s  unable  to f i t  any  ell ipse  to  some of the  given  rectangles.  .This  might 
be  expected,  however,  since  the one step  minimization  was  unable  to 
fit  an  ellipse  to  an  ellipse  under  high  noise  conditions,  as  was  pointed 
out  in  Chapter IV. Thus,  the one step  minimization  method  does  not 
appear  to be  a  good method  for  estimating  the  parameters of a rectangle. 

The  iterative  minimization  scheme  was  next  employed  to  esti- 
mate   the   parameters  of these  same  rectangles.  The  same  values  were 
used  for  the  range  constraints  as  were  used  in  the  recognition of ell ipses 
in  Chapter IV. Tables 7,  8, 9 ,  and 10 show  the  results of using  this 
scheme.  The  initial  estimate  used f o r  the  parameter  vector of the  fitted 
ell ipse  for  the  ten  larger  rectangles  was 

ce = [;;:I 0. 25 

Inspection of Tables 7,  8, 9 ,  and 10 indicates  that  the  iterative 
minimization  scheme is quite  effective  in  estimating  the  parameters of 
a rectangle.  It  is  seen  that  the  ratio rz / rw corresponding  to  the  radii 
of the  fitted  ellipse  is  equal  (to  within  three  decimal  places)  to  the  radii 
R z / R w  of the  rectangle  which  is  to be recognized.  Thus  the  ratio of 
the  radii of the  fitted  ellipses  gives a direct  indication of the  shape of 
the  rectangles  to  which  they  are  fitted. 

Tables 7, 8 ,  9 ,  and 10 also  indicate  that  the  size of the  rec- 
tangles  may be determined  to a reasonable  degree of accuracy.  When 
eight  data  points  on  the  boundary of the  rectangle  are  given,  Table 7 
shows  that R w  = 0. 775 rw, meaning  that   the  rectangles '   radii   are 0. 775 
times  the  length of the  fitted  ellipses'  radii.  Likewise,  Tables  8, 9 ,  
and 10 show  that  the  scale  factor, R w / r w  is   equal t o  0. 830, 0.842,  and 
0.845  for 20, 48,  and  100 data  points on the  boundary of the  rectangle, 
respectively. 

One can  see  that  the  scale  factor  does  not  change  appreciably 
when  more  than 48 data  points  are  given. If one assumes  that  the  scale 
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factor  associated  with  100  data  points is essentially  the  same as the 
scale  factor  associated  with  an  infinite  number of data  points  (which  seems 
reasonable  in  light of the  above  results)  then it is  possible  to  compare 
the  scale  factor  associated  with a finite  number of data  points  with  the 
scale  factor  associated  with a continuous  representation of the rectangle. 
For  eight  data  points  this  ratio is 0. 775/0.  845 = 0. 917,  which  means 
that  the  estimated  size of the  rectangle is only 91. 7%  of the  size of the 
actual  rectangle,  although it has  exactly  the  same  shape as  the  actual 
rectangle.   For 20 data points  this  ratio  increases  to 0. 830/0.  845 = 
0. 983  and  for 48 data points  the  ratio is 0. 842/0.  845 = 0. 997. Thus, if 
the  rectangle is represented by  twenty or  more  data  points  on its boundary, 
then  one  need  merely  multiply  the  radii of the  fitted  ellipse by the  factor 
0. 845  to  obtain  the radii of the  corresponding  rectangle,  having  assurance 
that  this  rectangle wi l l  be  at  least  within 2% of the  size of the  actual 
rectangle. 

Tables  7,  8, 9 ,  and 10 show  another  very  desirable  property of 
the  iterative  minimization  scheme,  namely,  the  translation  and  rotation 
parameters  of the  fitted  ellipses  have  exactly  the  same  values ( to  within 
three  decimal  places) as the  corresponding  parameters of the  given 
rectangles.  Therefore,  only  the first two  components of the  fitted 
ell ipse 's   parameter  vector  need  to be transformed  in  order  to  obtain  the 
parameter   vector  of the  rectangle,  and  this  transformation  is a simple 
scale  change. 

Thus,   the  desired  relationship  between  the  parameter  vector of 
the  fitted  ellipse  and  the  parameter  vector of the  associated  rectangle 
has  now been  determined. If the  f inal   estimate  for  the  parameter  vector 
of the  fitted  ellipse is  given by 

ce = 
-b 

then  the  estimate  for  the  parameter  vector of the  rectangle  which is to 
be  recognized is 
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where k, the  scale  factor,  is a function of the  number of data  points. 
If the  number of data  points is 20 or   g rea te r ,  k may  be  taken  to be 0. 845. 

5. 4 Parameter Estimation  for  Noisy 
Rectangular  Patterns 

Since  the  iterative  minimization  scheme  was  able  to  effectively  recognize 
rectangles,  the quest ion  natural ly   ar ises  as to how well it can  recognize 
rectangles  which  are  represented by noisy  data  points.  In  order  to  deter- 
mine  this a total of twenty-four  different  cases  were  considered, as was 
done  with  the  ellipse  in  Chapter IV. 

The  noiseless  rectangle,   whose  parameters  are  to be estimated, 
is characterized by the  following  parameter  vector, 

2 , o d  
1 . 0 0  
1.00 
2 . 0 0  
0 .  50, ( 5. 7) 

The last three  components  have  the  same  value  as  they  did  for  the 
ellipse  considered  in  Chapter IV. The  noise  levels  are  also  the  same as 
they  were  previously,  namely, IT = 0. 0 ,  0. 1, 0. 2 ,  0 .  3 ,  0. 4, and 0. 5. Also, 
all of the  parameters  associated  with  the  iterative  minimization  scheme 
were  given  the  same  values  as  they  had  in  Chapter IVY with  the  exception 
of the  initial  parameter  vector  estimate Fe. It is  

+ ce = 

e1 

e2 
A 
B 
e 

0 .  25 
1.00 
0 .  70  

-2. 50 
0.  80 

Figures  15, 16, 17,  18,  19,  and 20 show  the  results of estimating 
the  parameter  vector of a rectangle  using  the  iterative  minimization 
scheme.  Before  discussing  these  results it should be pointed  out  that 
the  radii of the  rectangle  were  computed by using  the  scale  factor  associ- 
ated  with  the  appropriate  number of data  points.  Thus,  for  example,  for 
the  six  cases  in  which  the  rectangle  was  represented by 20 data  points 
the  scale  factor  which  was  used  was 0. 830, and  not 0. 845. By doing this,  
any  error   in   the  es t imated  parameter   vector  is due  to  the  noisy  data  points. 

An  examination of Figure 2 reveals  that  the. x-radii   and  y-radii  
(w-axis   radi i   and x-axis radii ,   respectively) of the  fitted  rectangles 
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differ  in the third  decimal   place  f rom the corresponding  radi i  of the 
reference  rectangles.   This is due  to  rounding off the scale   factors   to  
the third  decimal  place.   This  error is entirely  negligible  compared  to 
the e r ro r   r e su l t i ng   f rom the noisy  data  points. 

In  some of the  f igures   there   are   not  as many  noisy  data  points 
as the  number  which is indicated.  This is  due  to  the  fact  that  some of 
the  noisy  data  points fell outside of the  field of view. A s  before,   these 
data  points  are  considered  to  be  valid  points  for  the  i terative  minimiza- 
tion  scheme to  use,  being  znalogous to  measurement  noise.  

An inspection of Figures  15,  16,  17,  18, 19, and 20 shows  that 
fitting  an  ellipse  to a se t  of data  points  belonging on the  boundary of a 
rectangle is an  effective  method  by  which t o  es t imate   the  parameters  
of the  rectangle  when  the  noise  level  is  within  reasonable  limits 
(u = 0. 0 ,  0 .  1,  and 0. 2 ) .  

Referr ing  to   Figure 16 ( u = 0. 1) one sees  that   the  rectangles 
which  correspond  to  the  f i t ted  ell ipses  ( the  dashed  l ine  rectangles) 
resemble  the  reference  rectangles  very  closely  except  in  the  eight  data 
point  case.  It  would  seem  that  eight  data  points,  when  corrupted  by 
noise ,   s imply  are   too  sparse   in   number   for   the  i terat ive  minimizat ion 
scheme t o  yield a good.estimate  for  the  reference  rectangle’ s parameter  
vector.  However, it should be noted  that   the  error  in  estimating  the 
rotation  angle  for  the  eight  data  point  case is quite  acceptable,  being 
approximately two percent .   In   the  other   three  cases   this   error   is   approxi-  
mately one percent   or   less .  

F o r  u = 0. 2 it   can be seen  in  Figure  17  that   the  parameter  vector 
estimates  are  beginning to  deteriorate,   but f o r  the 20, 48 and 100 data 
point   cases   these  es t imates   are   s t i l l   acceptable  by most   s tandards.  In 
par t icu lar ,   i t   i s   seen   tha t   for   these   th ree   cases   the   e r ror   in   the   ro ta t ion  
angle  estimate is no  greater  than  approximately  four  percent,  which  is 
ra ther   small   consider ing  the  scat ter  of the  data  points. 

When the  noise  level  reaches u = 0. 3 ,  the  overall   effectiveness 
of the  iterative  minimization  scheme  becomes  questionable.  The  fitted 
rectangles  have a tendency  to be larger   than  the  reference  rectangles .  
However,  one good  point  which  can  be  made is that  the  estimate f o r  the 
rotation  angle  in  all  four  cases  does  not  exceed  four  percent,  which 
means  that   this  estimate  has  not  been  affected t o  any  extent by the 
increase  in  noise  level f r o m  u = 0. 2 t o  u = 0 .  3. 
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Figures  19 and 20 indicate  that  for  high  noise  levels ( u = 0.4 and 
0. 5) the  recognition  capability of the  iterative  minimization  scheme  has 
completely  deteriorated.  Some  improvement  could be achieved  for  the 
cases  in  which  the  fitted  rectangles  have  radii  equal  to  their  constraint 
value.  In  these  cases  the  fitted  rectangle is a square W h 1 C h  concentrates 
the  data  points  in one of i ts   corners,   with  approxlmately one  half of the 
data  points  on  the  Inside of the  square  and one  half on the  outside.  This 
situation is very  similar  to  that   which  occurred  in  the  recognition of 
ellipses  under  high  noise  conditions,  and it can be remedied  in  exactly 
the  same  manner  as  described  in  Chapter IV. 

5. 5 Summary 

This  chapter  investigated  the  feasibility of utilizing  either  the 
one step  minimization  method  or  the  iterative  minimization  scheme t o  
estimate  the  parameters of a rectangle  when  noisefree  data  points  lying 
on the  rectangle' s boundary  are  given. If the  parameters   are   es t imated 
with  sufficient  precision  then  the  rectangle  has  been  "recognizedll  correctly. 

It  was  found  that  the  one  step  minimization  method  was  completely 
inadequate  in  its  capability  to  estimate  the  parameters of given  rectangles. 
While it  did do  a reasonable  job  in  estimating  the  translation  and  rotation 
parameters,   the two major  shortcomings of this  method  were 

( 1)  the  ellipse  which  was  fitted  to  the  data  points  did  not 
have  the  same  shape  as  the  given  rectangle, i. e. , the 
ratio of the  radii of the  fitted  ellipse  was  not  identical 
to  the  corresponding  ratio of the  radii of the  given 
rectangle,  

and 
( 2)  the  size of the  fitted  ellipse  did  not  double  when  the  size of 

the  given  rectangle  doubled. 

The  iterative  minimization  scheme, on the  other  hand,  did  not 
have  these  shortcomings. Not only  did  it   estimate  the  translation  and 
rotat ion  parameters   very  precisely,  but  the  ellipse  which  it  fitted  to  the 
data  points  had  radii  whose  ratio  was  identical  to  that of the  given 
rectangle,  and  this  ratio  was  .independent of the  size of the  given  rec- 
tangle.  It  was  therefore  possible  to  experimentally  determine a scale 
factor  relating  the  size of the  f i t ted  ell ipse 's   radii   to  the  radii  of the 
given  rectangle. 

Since  the  iterative  minimization  scheme  had  the  capability  to 
precisely  estimate  the  parameters of a rectangle  whose  boundary  points 
were  noise  free,   the  next  step  was  to  determine  the  degradation  in  the 
parameter  vector  estimates  in  si tuations  for  which  the  data  points  were 
noisy.  Reference  to  Figures  15,  16,  and 1 7  indicates  that  for  moderate 
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levels of noise ( u = 0.0 ,  0. 1,  and 0. 2) the  iterative  minimization  scheme 
did a very  sat isfactory job of recognizing the rectangles,  Special  notice 
should  be  taken  concerning  the  accuracy  with  which  the  rotation  angle 
was  estimated.  Excluding  the  eight  data  point  case,  this  error  was 
never   greater   than  four   percent   for   these  moderate   noise   levels .  

The  recognition  scheme  produced  results of questionable  value 
for  noise  level IT = 0. 3. Although the rotation  angle  was still estimated 
with  good precis ion  (maximum of four   percent   e r ror ) ,   the   s ize  of the 
fitted  rectangle  tended  to be larger  than  the  .size of the  reference  rec- 
tangle.  It  can  be  said that cr = 0. 3 represents   the  maximum  noise   level  
for  which  the  iterative  minimization  scheme  produces  useful  results  for 
the  particular  set of rectangles  investigated. 

F o r  larger  noise  levels (r = 0.4 and 0. 5) the  iterative  minimiza- 
tion  scheme  was  not  able  to do a satisfactory  job of recognizing  the  rec- 
tangles at all. This is not  at all surprising,  since  even a human  being 
would  have  difficulty  trying  to  fit a rectangle  to  the data as shown on 
Figures  19 and 20. 
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TABLE 3: PARAMETERS OF ELLIPSES  FITTED  TO  RECTANGLES 
BY THE  ONE  STEP MINIMIZATION  METHOD 

( 8  DATA POINTS) 

R W  Rz 

1.0 0 .1  
1.0 0. 2 
1 .0  0.3 
1.0 0.4 
1.0 0. 5 
1.0 0 .  6 
1 .0  0.7 
1 .  0 0. 8 
1.0 0 .9  
1.0 1.0 

2. 0 0. 2 
2.0 0 . 4  
2.0 0 .  6 
2. 0 0. 8 
2.0 1.0 
2.0 1. 2 
2.0 1.  4 
2. o 1. 6 
2. 0 1.  8 
2.0 2.0 

% / R W  

0,100 
0.200 
0. 300 
0. 400 
0. 500 
0.600 
0. 700 
0. 800 
0.900 
1.000 

0.100 
0. 200 
0. 300 
0. 400 
0. 500 

0. 700 
0.800 
0.900 
1.000 

0.600 

rW rz 

1. 331 0.077 
1 .  768 0. 202 
1. 755 0. 298 

1. 799 0.491 
1. 834 0. 585 
1 .  886 0.675 

1 .  773 0. 396 

1. 957 0. 761 
2.063 0.842 
2. 234 0. 915 

3. 517 0. 201 
3.  540 0. 395 
3. 670 0.  584 

4. 481 0. 915 
6. 801 1.030 

3. 918 0.  761 

J- 
1- 

*< 

J- 
1. 

$< 

r Z / r W  

, 058  
, 1 1 4  . 170 
. 223 
. 273 
.319 . 358 
. 389 . 408 
.410 

* 057 
.112  
, 160 
. 194 . 204 
. 151 

A 

1. 152 
.962  
. 9 9 6  

1.006 
1.007 
1.010 
1.014 
1.017 
1.020 

. 995 
1.003 
1.008 
1.014 
1 .021  
1.010 

1.003 

B 

-1.917 
-2.023 
- 2.007 
- 2.008 
-2.016 
-2.018 
-2.025 
-2.034 
-2.045 
-2.060 

-2.005 
- 2.007 
-2.017 
-2.034 
- 2.060 
-2.  109 

.I_ 
-r 

Not  able  to f i t  el l ipse  data,  

rectangles '   radi i  Note: R corresponds  to   reference , .  

r corresponds  to   f i t ted  e l l ipses '   radi i  

e 

, 4 9 6  
. 499 
. 499 
.499 
. 498 
.497 
. 496 
.495  
. 493 
. 49  1 

. 500 

. 500 

. 499 

.499 

. 498 
* 497 

All  reference  rectangles  have A = 1.0 ,  B = -2.0,  and 

e = o . 5  
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TABLE 4: PARAMETERS O F  ELLIPSES  FITTED  TO  RECTANGLES 
BY THE  ONE S T E P  MINIMIZATION  METHOD 

(20 DATA POINTS) 

Rw 

1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  

2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 

Rz 

0. 1 
0. 2 
0. 3 
0. 4 
0. 5 
0. 6 
0. 7 
0. 8 
0 . 9  
1.0 

0. 2 
0. 4 
0. 6 
0. 8 
1 . 0  
1. 2 
1. 4 
1. 6 
1. 8 
2. 0 

Rz/R, 

0.100 
0 .200  
0. 300 
0.400 
0. 500 
0. 600 
0. 700 
0. 800 
0 .900  
1 , 0 0 0  

0. 100 
0. 200 
0. 300 
0. 400 
0. 500 

0. 700 
0. 800 
0.900 
1.000 

0. 600 

r W  

0.699 
1. 326 
1. 330 
1 . 3 3 5  
1. 340 
1. 347 
1 . 3 5 4  
1. 364  
1 .377  
1. 3 9 4  

2. 643  

2. 6 9 5  
2. 671 

2. 729 
2. 789 
2. 902  
3. 1 6 5  
4. 429 
* 
* 

rz 

0.056 
0. 209 
0. 314 
0. 418 
0. 520 
0 . 6 2 2  
0. 722 
0.819 
0 . 9 1 4  
1. 0 0 5  

0. 209 
0. 418 
0. 622 
0 .819  
1 . 0 0 4  
1. 168 
1. 289 
1. 309 

QrW 

0.080 
0. 158 
0. 236 
0. 313 
0. 388 
0. 462 
0. 533 
0. 600 
0 . 6 6 4  
0. 721 

0. 079 
0. 156 
0. 231 
0.  300 
0. 360 
0. 402 
0. 407 
0. 296 

A 

1. 238 
0. 988 
1 . 0 0 3  
1 . 0 0 3  
1 . 0 0 4  
1. 0 0 5  
1. 008  
1 . 0 1  1 
1 . 0 1 4  
1. 018 

1 . 0 1 7  
1 , 0 0 2  
1 . 0 0 5  
1 . 0 1 1  
1 . 0 1 8  
1 . 0 2 9  
1 . 0 4 6  
1 . 0 6 2  

B 

-1 .865  
- 2 . 0 0 7  
-2 .002  
- 2.004 
- 2 . 0 0 8  
- 2 . 0 1 2  
- 2 . 0 1 6  
-2 .022  
- 2.0 29 
-2 .038  

- 1 . 9 9 2  
- 2 . 0 0 5  
-2 .012  
- 2 . 0 2 2  
- 2 . 0 3 8  
- 2 . 0 6 3  
-2.   104 
-2 .187  

e 

0. 498 
0. 500 
0. 500 
0 . 4 9 9  
0. 498 
0 .497  
0 . 4 9 6  
0 . 4 9 4  
0 . 4 9 1  
0. 487 

0. 500 
0. 500 
0 . 4 9 9  
0 .499  
0. 498 
0 .497 .  
0 . 4 9 5  
0. 492 

.L 
1- Not able t o  f i t  e l l i p s e  t o  da ta .  
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TABLE 5: PARAMETERS O F  ELLIPSES FITTED TO RECTANGLES 

( 4  8 DATA POINTS) 
B Y  THE  ONE S T E P  MINIMIZATION  METHOD 

Rw 

1 . 0  
1 .0  
1 . 0  
1 . 0  
1 .0  
1 .0  
1 . 0  
1 .0  
1 . 0  
1 . 0  

2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 

Rz 

0. 1 
0. 2 
0. 3 
0. 4 
0. 5 
0. 6 
0. 7 
0. 8 
0. 9 
1 . 0  

0. 2 
0. 4 
0 .  6 
0. 8 
1 . 0  
1. 2 
1 . 4  
1. 6 
1. 8 
2. 0 

0 .100  
0. 200 
0. 300 
0. 400 
0. 500 
0.  600 
0. 700 
0 .800  
0. 900 
1.000 

0. 100 
0 .  200 
0. 300 
0. 400 
0. 500 
0. 600 
0. 700 
0. 800 
0. 900 
1. 000 

1. 307 
1. 246 
1. 277 
1. 282 
1. 284  
1. 288 
1. 292 
1. 299 
1. 307 
1. 317 

2. 537 
2. 564  
2.57 6 

2. 6 3 5  
2. 598 

2. 702 
2 .845  
3. 323  
* 
.I. 
-8. 

r Z  

0.111 
0. 207 
0. 318 
0. 424  
0. 529 
0 . 6 3 2  
0 . 7 3 5  
0 . 8 3 5  
0 .933  
1. 028 

0 . 2 1 1  
0. 424 
0. 633  
0 . 8 3 5  
1. 028 
1. 203 
1. 343 
1. 401 

rz/rw 

0 . 0 8 5  
0 .166  
0. 249 
0. 331 
0. 412 
0. 491 
0.  569 
0 .643  
0. 7 1 4  
0. 781 

0 . 0 8 3  
0 . 1 6 5  
0 .  246 
0. 321 
0. 390 
0. 445  
0. 472 
0.  422 

A 

0 .  640 
1 . 0 0 1  
1 , 0 0 1  
1 .001  
1 . 0 0 3  
1 . 0 0 4  
1 .006  
1 .009  
1 . 0 1 2  
1 . 0 1 5  

0 . 9 7 7  
1 . 0 0 2  
1 . 0 0 4  
1 . 0 0 9  
1 . 0 1 5  
1 . 0 2 5  
1. 040 
1 . 0 6 5  

B 

- 2 . 2 0 6  
-2 .00  1 
-2 .002  
-2 .005  
-2.007 
-2 .010  
-2 .013  
-2 .018  
- 2 .024  
-2 .031  

- 2 . 0 1 4  
- 2 .004  
-2.010 
-2 .018  
-2. 032 
- 2.0  52 
-2 .086  
-2.   152 

e 

0. 515  
0. 503  
0. 501 
0. 500 
0 .499  
0. 498 
0 .497  
0 . 4 9 5  
0 .491  
0. 486 

0. 500 
0. 500 
0. 500 
0 .  499 
0. 498 
0 . 4 9 7  
0 . 4 9 5  
0. 492 

.I- 
1. 

Not a b l e  to f i t  e l l i p s e   t o   d a t a .  
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TABLE 6: PARAMETERS O F  ELLIPSES FITTED  TO  RECTANGLES 
B Y  THE  ONE S T E P  MINIMIZATION  METHOD 

( 100 DATA  POINTS) 

R w  

1 . 0  
1 .0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  

2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 

Rz 

0. 1 
0. 2 
0. 3 
0. 4 
0. 5 
0. 6 
0. 7 
0. 8 
0. 9 
1 . 0  

0. 2 
0. 4 
0. 6 
0. 8 
1 . 0  
1. 2 
1. 4 
1. 6 
1. 8 
2. 0 

R J R ,  

0 .100  
0. 200 
0. 300 
0. 400 
0. 500 
0. 600 
0. 700 
0. 800 
0. 900 
1.000 

0. 100 
0. 200 
0. 300 
0. 400 
0. 500 
0. 600 
0. 700 
0. 800 
0 .900  
1 . 0 0 0  

T W  

0. 491 
1. 256 
1. 265 
1. 269 
1. 273 
1.  277 
1. 281 
1. 287 
1. 295 
1. 305 

2. 552 
2. 543 
2. 556 
2. 577 
2. 611 
2. 672 
2. 801  
3. 215 
.I< 
-P 

.L 
1. 

I Z  

0 . 0 4 4  
0. 213 
0. 320 
0. 425 
0. 530 
0. 6 3 5  
0. 737 
0. 838 
0 . 9 3 7  
1 . 0 3 2  

0. 214 
0. 425 
0. 634  
0. 838 
1 .032  
1. 209 
1. 353 
1. 417 

rz/r W 

0.090 
0. 170 
0. 253 
0. 3 3 5  
0. 416 
0. 497 
0. 575 
0. 651 
0. 724 
0. 791 

0 . 0 8 4  
0. 167  
0. 248 
0. 325  
0. 395 
0. 452 
0. 483 
0. 441 

A 

0. 722 
1 . 0 1 5  
0. 9 9 5  
1 . 0 0 0  
1 . 0 0 2  
1 . 0 0 4  
1 . 0 0 6  
1 . 0 0 8  
1.011 
1 . 0 1 5  

0 . 9 9 5  
1 . 0 0 3  
1 . 0 0 5  
1 . 0 0 8  
1 . 0 1  5 
1 . 0 2 4  
1 . 0 3 9  
1 . 0 6 4  

B 

-2.  141 
- 1 . 9 9 2  
- 2 . 0 0 4  
- 2 . 0 0 4  
-2 .006  
-2 .009  
- 2 . 0 1 3  
- 2 . 0 1 7  
- 2 . 0 2 3  
-2 .030  

- 2 . 0 0 5  
- 2 . 0 0 4  
-2 .009  
- 2 . 0 1 8  
-2 .030  
-2.  050 
- 2 . 0 8 3  
-2.146 

e 

0. 506 
0. 503 
0. 501 
0. 500 
0 . 4 9 9  
0. 498 
0. 496 
0 . 4 9 5  
0. 491 
0 . 4 8 6  

0 .497  
0 .499  
0 .499  
0 . 4 9 9  
0. 498 
0. 497 
0. 495 
0. 492 

4, 
1- 

Not  able  to f i t  e l l i p s e  to  data. 
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TABLE 7: PARAMETERS OF ELLIPSES  FITTED TO RECTANGLES 

(8 DATA POINTS) 
B Y  THE  ITERATIVE  MINIMIZATION  METHOD 

2.0  0. 2 0. 100 
2 .0  0. 4 0. 200 
2, 0 0.  6 0 .  300 
2. 0 0 .  8 0. 400 
2 . 0  1. 0 0. 500 
2. 0 1. 2 0.  600 
2. 0 1. 4 0. 700 
2. 0 1. 6 0.  800 
2 .  0 1,  8 0 .  900 
2. 0 2. 0 1. 000  

2. 582 0. 258 0. 100 1. 000 -2.  000 0. 500 
2. 582 0 .  516 0 .  200  1 .000  -2 .000 0 .  500 
2. 582 0. 775 0.  300 1. 000 - 2 . 0 0 0  0. 500 
2. 582 1. 033 0 .  400 1. 0 0 0  -2. 0 0 0  0 .  500 
2 .  582 1. 291 0. 500 1. 000 -2. 000 0. 500 
2.  582 1. 549 0 .  600 1. 0 0 0  -2 .000  0 .  500 

2, 582 2.066 0. 800 1. 000 -2. 000 0. 500 
2. 582 2. 324 0 .  9 0 0  1. 0 0 0  -2. 0 0 0  0. 500 
2. 582 2. 582 1. 0 0 0  1. 0 0 0  -2. 000  0.  454 

2,  582 1. 807 0 .   7 0 0  1. 000 -2 .000  0. 500 

r - e l l i p s e   r a d i i  

R - r e c t a n g l e   r a d i i  

S c a l e   F a c t o r  

da t a   po in t s  
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TABLE 8 :  PARAMETERS O F  ELLIPSES  FITTED TO RECTANGLES 
B Y  THE  ITERATIVE  MINIMIZATION  METHOD 

( 20 DATA POINTS) 

Rw 

2. 0 
2. 0 
2 .  0 
2. 0 
2 .0  
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 

0. 2 0. 100 2 .  409 
0. 4 0. 200 2. 409 
0. 6 0. 300 2. 409 

1. 0 0. 500 2. 409 
1. 2 0. 600 2. 409 

1. 6 0 .  800 2 .  409 

2.0 1.000 2. 409 

0. 8 0. 400 2 .  409 

1. 4 0. 700 2. 409 

1.8 0. 900 2. 409 

r - el l ipse  radi i  

R - rectangle  radii  

Scale  Facto 1 

r Z  

0. 241 
0. 482  
0. 723 
0.963 
1. 204  
1. 445 
1. 686 
1. 927 
2. 168 
2 .  409 

r z / r w  

0,100 
0. 200 
0. 300 
0. 400 
0. 500 
0. 600 
0. 700 
0. 800 
0. 900 
1.000 

A 

1.000 
1.000 
1.000 
1.000 
1 .000  
1 .000  
1.000 
1.000 
1.000 
1 .000  

B 

- 2 . 0 0 0  
-2 .000  
- 2 . 0 0 0  
-2 .000  
- 2 . 0 0 0  
- 2 . 0 0 0  
-2.000 
- 2 . 0 0 0  
-2 .000  
-2 .000  

e 

0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0.859 

P O  data points 
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r -  

TABLE 9: PARAMETERS O F  ELLIPSES  FITTED  TO  RECTANGLES 
B Y  THE  ITERATIVE MINIMIZATION  METHOD 

( 48 DATA POINTS) 

R W  

2. 0 
2. 0 
2. 0 
2 . 0  
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 

0 . 2  0.100 2 , 3 7 4  
0 . 4  0 . 2 0 0  2 . 3 7 4  
0 .  6 0 ,  300 2. 3 7 4  
0 .  8 0 .  400 2, 3 7 4  
1. 0 0. 500 2. 3 7 4  
1. 2 0 .  600  2. 3 7 4  

1.6 0 .800  2. 3 7 4  
1. 8 0 .  900 2. 3 7 4  
2 . 0  1.000 2 . 3 7 4  

1. 4 0. 700 2. 3 7 4  

r - ell ipse  radii  

R - rectangle  radii  

Scale  Facto 1 

r Z  

0. 237 
0. 475  
0, 7 1 2  
0. 950 
1.   187 
1. 4 2 4  
1. 6 6 2  
1.899 
2.  137 
2.  3 7 4  

r z / r w  

0 .  100 
0 .  200 
0 .  300 
0, 400 
0, 500 
0 .  600 
0. 700 
0 .  800  
0 .900  
1.000 

A 

1 ,000  
1 , 0 0 0  
1.000 
1 , 0 0 0  
1.000 
1.000 
1 , 0 0 0  
1.000 
1 , 0 0 0  
1 .000  

Rw- Rz = k,, = - - - = 0 , 8 4 2  
rw I 'Z  

B 

- 2 . 0 0 0  
- 2 . 0 0 0  
-2 .000  
- 2 , 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 , 0 0 0  
- 2 . 0 0 0  
- 2 , 0 0 0  
-2 .000  

e 

0. 500 
0 .  500 
0 .  500 
0, 500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0 . 8 6 4  

148 data  points 
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T A B L E   1 0 :   P A R A M E T E R S  OF ELLIPSES F I T T E D  TO R E C T A N G L E S  
BY THE ITERATIVE  MINIMIZATION  METHOD 

(100  DATA  POINTS) 

R W  

2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 
2. 0 

0 .  2 0 .  100 
0.  4 0 ,  200 
0 .  6 0 .  300 
0. 8 0. 400 
1. 0 0 .  500 
1. 2 0 .  600 
1. 4 0 .  700 
1. 6 0 .  800 
1. 8 0 .  900 
2. 0 1, 000  

2. 368 
2, 368 
2. 368 
2. 368 
2. 368 
2. 368 
2. 368 

2,  368 
2. 368 

2. 369 

r - e l l i p s e   r a d i i  

R - r e c t a n g l e   r a d i i  

Scale F a c t o r  I 

r Z  

0 .  237 
0. 474 
0 .  710 
0 . 9 4 7  
1. 1 8 4  
1.  421 
1. 658 
1. 8 9 5  
2. 131 
2. 368 

r z / r w  A 

0 .  100 
0 ,  200 
0 .  300 
0 .  400 
0. 500 
0 .  600 
0.  700 
0 , 8 0 0  
0. 900 
1 . 0 0 0  

1 . 0 0 0  
1 , 0 0 0  
1 . 0 0 0  
1. 0 0 0  
1 , 0 0 0  
1 , 0 0 0  
1 .000  
1 . 0 0 0  
1 , 0 0 0  
1. 0 0 0  

B 

- 2.000 
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  
- 2 . 0 0 0  

r w  r z  

9 

0 .  500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0. 500 
0 .  500 
0. 500 
0. 500 

1100 da ta   po in t s  
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FIELD  OF VIEW 

00 

8 ORTR P B I N T S  
S T R N O R R O  O E V I R T I O N  = 0 . 0  

REFERENCE  RECTRNGLE 
X-RFIOIUS = 2.000 
Y - R R O I U S  = 1 .000 
X - T R R N S L R T I O N  = 1 . 0 0 0  
Y - T R R N S L R T I O N  = - 2 . 0 0 0  
R O T R T I O N   I N   O E G R E E S  = 28.GU8 

LERST-SQUf lRES  RECTRNGLE 
X-RROIUS = 2 . 0 0 1  
Y-RFIDIUS = 1 . 0 0 1  
X - T R R N S L R T I B N  = 1 . 0 0 0  
Y - T R R N S L R T I B N  = -2 .000 
R B T R T I O N   I N   D E G R E E S  = 28 .648  

""""""""""""" 

Fig. 15--Rectangles   f i t t ed  t o  d a t a   p o i n t s ,  CT = 0.0 . 
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REFERENCE  RECTRNGLE - 
X-RFIOIUS = 2.000 
Y - R R O I U S  = 1 . 0 0 0  
X - T R R N S L R T I B N  = 1 .000  
Y - T R R N S L R T J B N  = - 2 . 0 0 0  
RBTRTIBN IN OEGREES = 28 .~118  

20 ORTR P O I N T S  
STRNORRO  OEVIRTJClN = 0 . 0  

L E R S T - S Q U f l R E S   R E C T f l N G L E  
X - R R D I U S  = 1 . 9 9 9  
Y - R F I O I U S  = 1 . 0 0 0  
X - T R R N S L R T I B N  = 1 .000  
Y - T R R N S L R T I B N  = - 2 . 0 0 0  
RBTF~TIBN IN DEGREES = 28.6118 

00 

Fig. 15"Continued . 
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FIELD OF V I E B  

4 8  O R T R  POINTS 
STRNORRO  OEVIF IT ION = 0 .0  

REFERENCE  RECTRNGLE 
X - R R O I U S  = 2 .000 
Y - R R O I U S  = 1 .000 
X - T R R N S L R T I B N  = 1 .000 
Y - T R R N S L R T I B N  = -2 .000 
ROTFITION IN D E G R E E S  = 28 .648  

L E f l S T - S Q U R R E S   R E C T f l N G L E  
X - R R O I U S  = 1 . 9 9 9  
Y - R R O I U S  = 0 .999 
X - T R A N S L R T I B N  = 1 . 0 0 0  
I - T R R N S L R T I B N  = -2 .000 
ROTRTIBN I N  OEGREES = 2 8 . 6 4 8  

Fig. 15"Continued . 
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FIELD OF V I E W  

3.50 
1 .  ~- 

REFERENCE  RECTFINGLE 
~" ~~ 

X-RROIUS = 2 . 0 0 0  
Y - R R O  IUS = 1 . 0 0 0  
X - T R R N S L R T I B N  = 1 .000 
Y - T R F I N S L R T I B N  = - 2 . 0 0 0  
ROTFITION IN O E G R E E S  = 28.648 

100 O R T R  P C l I N T S  
STFINORRO  OEVIFITION = 0 . 0  

LEFIST-SQUFIRES  RECTFINGLE 
X - R F I O I U S  = 2 . 0 0 1  
Y-RFIOIUS = 1 . 0 0 1  
X - T R R N S L R T I B N  = 1 . 0 0 0  
Y - T R F I N S L R T I B N  = - 2 . 0 0 0  

""""""""""""" 

R O T F I T I B N   I N   O E G R E E S  = 2 8 . 6 4 8  

00 

Fig. 15--Concluded . 
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FIELD OF V I E W  

8 O R T R  POINTS 
STFINDRRD OEVIRTION = 0 .1  

REFERENCE  RECTRNGLE 
X - R R O I U S  = 2 .000  
Y - R R O I U S  = 1.000 
X-TRRNSLRTION = 1 .000 
Y-TRRNSLRTION = - 2 . 0 0 0  
ROTRTION I N  DEGREES = 28.GU8 

LERST-SQURRES  RECTRNGLE 
X - R R O I U S  = 2 .079  
7-RROIUS = 0 . 9 7 3  
X-TRRNSLRTIBN = 0 . 8 2 0  
Y-TRRNSLRTIBN - 2 . 1 6 0  
ROTRTION I N  DEGREES = 30.5GU 

- - - - - - - - - - - - - - - -. - - - - - - - I .. - 

Fig. 16--Rectangles  fitted  to  data  points, 0 = 0.1 . 
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FIELD OF V I E W  

3.50 
I 

REFERENCE  RECTFlNGLE 
X-RROIUS = 2.000 
I-RROIUS = 1.000 
X-TRRNSLRTION = 1 .000  
Y-TRRNSLRTIBN = -2.000 
AOTRTION  IN  OEGREES = 28.648 

20 OflTR POINTS 
STRNORRO  OEVIRTION = 0.1 

LEFlST-SQURRES  RECTFlNGLE 
""""""""""""" 

X-RROIUS = 2.020 
Y - R R O I U S  = 1 . 0 0 4  
X-TRRNSLRTION = 1.023 
I-TRRNSLMTIBN = - 1 . 9 7 7  
RClTRTIClN IN  DEGREES = 28.137 

10 

Fig. 16--Continued . 
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FIELD OF V I E W  

I 

REFERENCE  RECTRNGLE 
X - R R O I U S  = 2 . 0 0 0  
Y-RROIUS = 1 .000 
X - T R R N S L R T I B N  = 1.000 
Y - T R R N S L R T I O N  = -2.000 
ROTRTIBN IN OEGAEES = 2 8 . 6 4 8  

4 8   D R T R   P O I N T S  
S T R N O R R O   O E V I R T I B N  = 0 .1  

L E O S T - S Q U R R E S  RECTRNGLE 
X - R R O I U S  = 1 . 9 9 2  
T - R R O I U S  = 1 . 0 3 1  
X - T R R N S L R T I B N  = 1.021 
T - T R R N S L R T I O N  = - 2 . 0 4 4  
RPJTRTIBN I N  OEGAEES = 2 9 . 6 3 4  

- - - - - - - - - - - - - - - _. - - - - - - " - - - 

Fig .  16--Continued . 
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FIELD  OF  VIEW 

IO 0.50 1.00 1.50 1.00 2.50 3.00 3.50 

REFERENCE RECTf lNGLE 
X - R R D I U S  = 2 . 0 0 0  
Y - R R O I U S  = 1 .000  
X - T R R N S L R T I B N  = 1.000 
Y - T R R N S L R T I B N  = -2 .000 
R B T R T I O N  I N  OEGREES = z a . ~ u a  

100 D R T R   P O I N T S  
S T R N D R R O   O E V I R T I O N  = 0.1 

LERST-SQUf iRES  RECTf lNGLE 
X - R A D I U S  = 1 . 9 5 7  
Y - R R O I U S  = 1 . o u 2  
X - T R R N S L R T I B N  = 0 . 9 7 9  
I - T R R N S L R T I B N  = - 2 . 0 3 3  
R O T R T I O N   I N  DEGREES = 29 .195  

""--"""""_""""- 

Fig. 16--Concluded . 

90 



I 

FIELD 0.F V IEW 

0 0 .50  1.00 1.50 2 . 0 0  &. 3.00 3.50 
f ,  \ 

a O R T R  POINTS 
S T R N O R R O   O E V I R T I O N  = 0 .2 

REFERENCE  RECTRNGLE 
X - R R O I U S  = 2.000 
Y - R F I D I U S  = 1 . 0 0 0  
X - T R R N S L R T I O N  = 1.000 
7 - T R R N S L R T I O N  = -2 .000 

" " 

ROTRTION I N  OEGREES = 28.6ua 

LEFIST-SQUFIRES  RECTRNGLE 
X - R R O I U S  = 2 .200  
Y - R F I O I U S  = 0 . 9 5 0  

""""""""""""" 

X-TRRNSLRTION = 1 . 2 8 9  

ROTFITION IN OECREES = 35 .822 
Y - T R R N S L R T I O N  = - 1 . 9 1 7  

Fig. 17"Rectangles fitted to data  points,  CT = 0 . 2  . 
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FIELD OF V I E W  

10 -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 
gO.0U 
D 

0.50 1.00 1.50 2 . 0 0  2.50 3.00 1.50 

REFERENCE  RECTFlNGLE 
X-RFIOIUS = 2 .000 
Y - R R D I U S  = 1.000 
X - T R R N S L R T I O N  = 1 .000 
Y - T R R N S L R T I O N  = - 2 . 0 0 0  
R O T R T I O N   I N   D E G R E E S  = 2 8 . 6 4 8  

20 OFlTR P O I N T S  
S T F I N O f l R D   D E V I R T I O N  = 0 . 2  

L E R S T - S Q U R R E S  RECTFlNGLE 
X - R R O I U S  = 1 .993  
Y-RFIOIUS = 1.092 
X - T R F I N S L R T I O N  = 0 . 8 7 8  
Y - T R R N S L R T I O N  = - 2 . 1 0 7  
R O T F I T I O N  I N  DEGREES = 29 .308 

""-""""""""""- 

Fig.  17"Continued . 
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F I E L D  OF V I E W  

REFERENCE  RECTFINGLE 
X-RROIUS = 2 .000 
Y - R R O I U S  = 1.000 
X - T R R N S L R T I O N  = 1.000 
Y - T R R N S L R T I B N  = -2 .000 
R B T R T I O N   I N  OEGREES = 28.6U8 

4 8  O R T R   P O I N T S  
S T R N O R R O   O E V I R T I B N  = 0 . 2  

LE f lST-SQURRES  RECTf lNGLE 
X - R R O I U S  = 1.91U 
Y - R R O I U S  = 1 .075 

""""""""""""" 

X-TRRNSLRTIBN = 1 . 0 8 4  
Y - T R R N S L R T I B N  = -1.998 
A B T R T I O N  I N  OEGREES = 32 .288 

Fig.  17--Continued . 
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F I E L D  OF V I E W  

R E F E R E N C E   R E C T F l N G L E  
X - R R O I U S  = 2 .000 
Y-RROIUS = 1 . 0 0 0  
X-TRRNSLRTION = 1 . 0 0 0  
Y-TRRNSLRTION = - 2 . 0 0 0  
ROTFITION IN DEGREES = 2 8 . 6 ~ ~ 1  

1 0 0  DRTfl  POINTS 
STRNORRO OEVIRTION = 0 . 2  

L E F l S T - S Q U F l R E S   R E C T R N G L E  
X - R R O I U S  = 1 . 9 9 0  
Y-RFIOIUS = 1 . 0 3 1  
X-TRRNSLOTIBN = 0 . 9 9 3  
Y-TRRNSLRTION = -1 .952  

""""""""""""" 

ROTRTION IN DEGREES = 2a .95u  

Fig .  17--Concluded . 
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FIELD OF VIEW 

(1.0 

, 
/ 

+ , 
, 

+ /  
0 0.50 1.00 1.50 2.00, z.50 \ 3 . 0 0  3 - 5 0  

I . L  

\ 

\ 
\ 
\ 
\ 
\ 
\ 

+ \  

J 
/ 

8 D R T R   P O I N T S  
S T R N O R R O   O E V I R T I O N  = 0 . 3  

REFERENCE  RECTFlNGLE 
X - R R O I U S  = 2 . 0 0 0  
Y - R R O I U S  = 1 . 0 0 0  
X - T R R N S L R T  I ON = 1 . 0 0 0  
7 - T R R N S L R T I O N  = - 2 . 0 0 0  
ROTRTION IN OEGREES = 28.6118 

LEFlST-SQUFlRES  RECTFlNGLE 
X - R R O I U S  = 2. 186  
Y - R R O I U S  = 1 . 0 0 9  
X - T R R N S L R T I O N  = 1 . 2 8 5  
Y - T R R N S L R T I O N  = - 1 . 5 6 0  

""""""""""""" 

ROTRTION IN OEGREES = 27 .806  

Fig.  18"Rectangles f i t t e d   t o   d a t a   p o i n t s ,  u = 0.3 . 
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FIELD OF VIEW 

0 x 

REFERENCE  RECTRNGLE 
X-RRDIUS = 2 .000  
Y - R R D I U S  = 1 .000  
X-TRRNSLFITIBN = 1.000 
Y-TRRNSLRTIBN = - 2 . 0 0 0  
RBTOTIBN I N  DEGREES = 28 .648  

2 0  DFlTR POINTS 
STRNOHRO OEVIRTION = 0 . 3  

LEgST-SQURRES  RECTRNGLE 
X-RFIOIUS = 2 . 0 6 9  
Y-RFID IUS = 1.  118 
X-TRRNSLRTIBN = 1 . 0 8 2  
Y-TRONSLOTIBN = - 2 . 0 2 0  
ROTRTIBN I N  DEGREES = 3 2 . 4 3 5  

Fig. 18--Continued . 
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FIELD OF 

D 

P 

V I E W  

10 

REFERENCE ""_ RECTRNGLE 
X-RFIUIUS = 2 .000 
7 - R F I O I U S  = 1.000 
X-TRFINSLFITION = 1.000 
7-TRFINSLFITION = -2.000 
ROTRTION IN OEGREES = 2 8 . 6 4 8  

4 8  OFITFI P O I N T S  
STF lNORRO  OEVIF lT ION = 0 . 3  

LERST-SQURRES  RECTFlNGLE 
X-RFIOIUS = 2 .002 
7 - R F I O I U S  = 1 .168  
X-TRFINSLFITION = 0 .985 
7 - T R R N S L R T I B N  = - 2 . 1 6 7  
R O T F I T I O N  I N  DEGREES = 28 .298 

""""""""""""" 

Fig.  18--Continued . 
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FIELD OF VIEW 

9 

0 

0 

0 

t 

+ 
+ 
/ * '  
f++' 

4+, ' ' + 
. ". 

100 O R T R   P U I N T S  
S T R N O R R O   O E V I R T I O N  = 0 .3  

REFERENCE R E C T F I N G L E  
X - R R O I U S  = 2 .000  
r - R m I u S  = 1 .000  
X - T R R N S L R T I B N  = 1 .000 
I - T R R N S L R T I B N  = - 2 . 0 0 0  
ROTRTION IN OEGREES = 2 8 . 6 ~ 8  

LEFIST-SQURRES R E C T R N G L E  
X - R R O I U S  = 2 .010 
7-RROIUS = 1.277 
X - T R R N S L F I T I U N  = 0 .975  
T - T R R N S L R T I B N  = - 2 . 0 2 2  

""""""""""""" 

A U T R T I B N   I N  OEGREES = 26 .393  

Fig. 18--Concluded . 
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FIELD OF V I E W  
0 

3 

4 

10 -3 .50  -3.00 -2 .50  -2.00 -1 .50  -1.00 -0 .50 
1- ~ L I. .L . L 

8 O R T R   P O I N T S  
S T R N O R R O   O E V I R T I O N  = 0 . 4  

REFERENCE  RECTFlNGLE 
X - R R O I U S  = 2.000 
Y-RFIOIUS = 1.000 
X - T R R N S L R T I B N  = 1.000 
7 - T R P N S L F I T I O N  = -2 .000 
R O T F I T I O N  I N  D E G R E E S  = 28 .648 

LEFlST-SQUFlRES  RECTFlNGLE 
X-RFIOIUS = 3 . 0 6 2  
""""""""""""" 

r - m o r u S  = 1.025 
X - T R R N S L F I T I O N  = 2 .039 
Y - T R R N S L R T I B N  = -1 .004  
R O T F I T I O N  I N  OEGREES = 47.132 

Fig .   19 - -Rec tang le s   f i t t ed   t o   da t a   po in t s ,  a = 0.4 . 
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FIELD OF 
0 

~ "" 
5 

0 

0 

+ 
I 

/ 
/ 8  

I 

V I E W  

REFERENCE  RECTFlNGLE - " 

X - R R O I U S  = 2 .000 
Y - R P O I U S  = 1 . 0 0 0  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

This  investigation  has  been  aimed  at a solution of the problem of 
real   t ime  landmark  ident i f icat ion  f rom  spacecraf t   opt ical   f ie lds .   The 
approach  which  has  been  taken relies upon  the  reduction of two  dimen- 
sional  optical   images  to a d i scre te  set of data  points  associated  with the 
boundary of an  object  to be identified.  Granted  such a se t  of points,  the 
work  reported  here  is directed  toward  the  fitting of computationally 
generated  images  to  the  real   image  points by means of an  algorithm  based 
upon  nonlinear  regression  analysis.  

In  order to  obtain  some  concrete  results,   the  present  investigation 
has  been  limited  to a consideration of arbi t rary  e l l ipt ical   and  arbi t rary 
rectangular  objects.  While  such  objects  may be relat ively  rare   among 
all   possible  landmarks of interest ,   the  approach  taken is one of approxi- 
mation of i r regular   objects  by ell iptical   or  rectangular  templates.   That 
is,  the  methods  developed  are  tolerant of large  amounts of noise  whether 
this  noise  is  introduced by measurement  and  sensing  processes  or by 
the  deviation of real   objects   f rom  el l ipt ical  o r  rectangular  shapes,   Thus,  
if  a known  object is within  the  field of view,  precise  information  about its 
size,  location,  and  orientation  can be obtained, f o r  example,   f rom  the 
parameters  of the  least   squares  ell ipse  f i t ted  to  i ts   boundary  points.  

The  computational  procedures  described  in  this  report  are  totally 
insensitive t o  image  rotation,  translation,  and  scale  change. So f a r   a s  
i s  known t o  the  authors, no alternative  image  processing  technique  exists 
with a capability of producing  extremely  accurate  object  parameter  esti-  
mates  under  such  conditions.  The  algorithms  presented  are  thus  felt  to 
provide  the first feasible  method  for  the  generation of very   p rec ise  
navigational  information f r o m  the  optical  images of known landmarks.  

While a l l  of the  results  contained  in  this  report   relate  to two 
dimensional  objects, it appears  that   the  basic  approach 1s applicable  to 
three  dimensional  image  analysis  as  well .   Specifically,  it seems  feasible  
that a computational  procedure  could  be  developed  which  would be capable 
of producing a replica of the  image of a given  three  dimensional  object 
produced by a particular  optical   system  with a specified  spatial  relation- 
ship to  the  object.  From  such a synthetic  image, it ought  to  be  straight- 
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forward  to  extract  boundary  points  which  could  then  be  compared  to  the 
boundary  points of the  real  scene.  Iterative  adjustment of the  spatial 
parameters,   used  to  generate  synthetic  images  could  then be accomplished 
by the  nonlinear  regression  program  included  in  this  report so as   to  op- 
timize  the f i t  of the  synthetic  image  to  the  real  image.  Such  an  exten- 
sion of the  present  work  would  permit  the  use of optically  derived 
guidance  information  in  such  difficult  tasks  as  automatic  orbital  rendezvous 
and  docking of spacecraft. 

In summary,  the  ability of a digital  computer t o  extract   accurate 
guidance  and  control  signals  from  optical  fields  has  been  established by 
this  study.  Additional  work  along  the  lines  indicated  by  this  research 
should  eventually  produce a very  valuable  means  for a spacecraft   or 
robot  vehicle  to  obtain  quantitative  information  regarding  its  position 
and  angular  orientation  relative  to  objects  within  its  field of view. 
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APPENDIX I 

GENERATION O F  DATA POINTS 

The  data  points  which  are  presented  to  the  parameter  estima .tion 
algorithm  are  not  physically  measured  points  since  no  equipment  was 
available  for  this  purpose.  The  entire  data  acquisition  process is 
instead  simulated  by a digital  computer.  The  following  sections  briefly 
explain how the  data  points  which  lie on the  boundary of an  ellipse or  a 
rectangle   are   generated,   as   wel l  as how noisy  data  points  may be gener- 
ated.  The  subroutine  which  generated  the data points is denoted  by DATA. 

The generation of the  data  points  lying on the  boundary of an 
ellipse  shall be considered  f irst .  An ell ipse,   as  shown  in  Figure  A-1, 
may be expressed  analytically by  Eqn. A-  1. 

whe r e  

Fig.  A- 1 --Ellipse  in w, z-reference  f rame.  

e l  w + e 2  z2 = 1 2 

e l  = - and e 2  = 1 1 

r,: r: 
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Thus, if one is given  the  two  parameters el and eZ  then  the  corresponding 
ellipse  in  the  w-z  plane is completely  specified. It is desired  to   represent  
this ell ipse '  s boundary  by  some  finite  number of points.   For a given 
number of data  points,  say N, there  are  infinitely  many  different  ways  in 
which  these  points  may be positioned on the  ellipse' s boundary.  However, 
it seems  quite  =realist ic  to  have  the  data  points  very  dense on  one por-  
tion of the  boundary  and  very  sparse,  or  nonexistent, on  the  remaining 
portion of the  boundary.  Perhaps  the  most  realistic  situation is for  the 
data  points  to  be  uniformly  distributed  on  the.boundary of the  ellipse. 
This  would  require  the  distance  between  any  two  adjacent  data  points  to 
be L / N ,  where L is the  length of the  boundary of the  ellipse.  This 
particular  distribution of the  data  points  on  the  boundary of the  ellipse 
was  not  used,  however,  because of the  complex  computer  programming 
which  would be involved  and  because  in  practice  the  physical  measuring 
equipment  probably  would  not  select  the  data  points  in  precisely  this 
manner  anyway. 

Fig.  A-2--Data  points  corresponding  to  ellipse  in W, z -  
reference frame. 

The N data  points  then  comprise  those  points on the  boundary of the 
ellipse  whose  w-coordinates  are  the  same  as  the  w-coordinates of the 
end  points of the  segments of the  w-axis  diameter. 
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After the w, z-coordinates of the  data  points  which lie on  the 
boundary of the ellipse  have  been  determined, it is necessary  to  find 
the coordinates of these same data  points  with  respect  to  the  reference 
x, y-coordinate  system.  These  two  coordinate  systems  are  shown  in 
Figure A-  3. 

Fig.  A-3--Data  points  corresponding  to  ellipse  in X, Y -  
reference  frame. 

Once  the x and  y-translation  (denoted by A and B, respectively) 
of the  center of the  ellipse  and  the  rotation ( denoted  by 8 )  of the  w-axis 
of the  ell ipse  are  specified,   then  the x, y-coordinates of the  data  point 
having  w,  z-coordinates ( w i  , Z i )  a r e  

xi = wi C O S  8 - zi  sin 8 + A ( A - 3 )  

yi = wi sin 8 t zi  cos 8 t B ( A - 4 )  

The x, y-coordinates of the  data  points  are  then  taken as the 
coordinates of the  data  points  which  represent  the  ellipse  whose  parameters 
a r e  now to be estimated. 

Rectangle 

I 

The data points  which lie on the  boundary of a given  rectangle 
are  generated  in a slightly  different  manner  than  those of. an  ellipse. 
Figure A - 4  shows a rectangle  whose  center is at  the  origin of the w, z-  
coordinate  system. 
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Fig.  A-4"Rectangle  in w ,  z-reference  f rame.  

The  rectangle 's   dimension  in  the  w-direction is 2rw,  while its 
dimension  in  the  z-direction  is 21-2. The  dimensions rw and rz  may be 
thought of as  "radii" of the  rectangle. 

The data points  are  selected  such  that  one quarter  of the  total 
number of data points  lie on each  side of the  rectangle.  This  requires 
N to be devisible  by  four.  The  data  points  are  further  restricted  to be 
equally  spaced  along  each  side.  Therefore,  the  spacing  between  data 
points  which  lie on the  vertical  boundaries is 8rz/N  while  the  spacing 
between  data  points  which  lie on  the  horizontal  boundaries is 8rw/N. 
Once  the w, z-coordinates of all the  data  points  lying  on  the  boundary 
of the  rectangle  are  found,  their  corresponding  x,y-coordinates  may be 
determined  from  Eqns.  A - 3 ,  4. 

Noise 

The  preceeding  discussion  has  briefly  explained how  the data 
points  corresponding  to  either  an  ellipse  or a rectangle   are   generated,  
being  given  the  parameters  el , e , ,  A,  B, 8 o r   r w ,   r z ,  A ,  B,  9. These 
data  points fall exactly  on  the  boundary of the  appropriate  pattern. 
Since  there is no error   in   the  coordinates  of these  data  points,  they  may 
be considered as  noiseless  data  points. 

In a realist ic  system,  however,  one  would  expect  that  the  mea- 
surement  points  would  not  exactly  overlay  the  boundary of the  pattern 
from  which  they  came.  This  error  may  be  due  to  several   different 
reasons.  For instance, i f  the  field of view  has  been  slightly  clouded 
over,  or  defocused,  then  the  boundary of the  pattern  is  no longer  precise 
and  the  exact  coordinates of points  lying on the  boundary  can  only be 
estimated.  Even i f  the  field of view  is   clear  there  is   st i l l   the  possibil i ty 
that  the  electronic  equipment  associated  with  the  optical  system  can  com- 
m i t   e r r o r s ,  be they  internal   or   t ransmission  errors .   Furthermore,  
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there  is always  the  quantization  error  associated  with  analog  to  digital  
conversion. Al l  of t hese   e r ro r s   may  be  considered  as  forms of noise. 

Therefore ,  in order  for  the  art if icially  generated  data  points  to 
realist ically  correspond  to  physically  measured  data  points it is  
necessary  to  degrade  the  art if icially  generated  data  points by corrupt-  
ing  them  with  some  type of noise. A detailed  analysis of the  physical  sys- 
t e m  would  be required  in   order  t o  know  the  exact  nature of the  actual 
noise;  i. e. , its  distribution  and  whether it is additive,  multiplicative, 
or  whatever.  In  this  study  no  particular  physical  system  was  considered; 
therefore,   the  noise  samples  were  assumed  to be additive,   statist ically 
independent,  gaussian  noise  samples. How well   this  art if icial   noise 
resembles   the  actual   noise   in  a physical  system  was  not  considered. 

The  gaussian  noise  was  generated  by  the  subroutine GAUSS which 
is  in   the  l ibrary of the IBM 360 /75  at  The  Ohio  State  University  Computer 
Center.  The  subroutine  permits  one to  specify  both  the  mean  and  the 
standard  deviation of the  gaussian  noise  samples  which it is to  generate. 
The  subroutine  makes  use of another  library  subroutine  called RANDU 
which  generates  uniformly  distributed  random  numbers  in  the  range 0-1. 
The  subroutine GAUSS approximates a gaussian  random  variable by 
adding  together  twelve  uniform  random  variables,  making  use of the 
Central   Limit   Theorem. 

Since it is assumed  that   the  noise is additive  gaussian,  the  numbers 
which  are  generated  by GAUSS are  simply  added  independently  to  each 
coordinate of the  data  points.  Thus, if the  coordinates of a noiseless  data 
point a r e  given by (Xi,Y i )  , then  the  coordinates of the  corresponding 
noisy  data  point  are  (xi ,   yi)  , where 

where  n-  and  nj +. 1 a r e  two  consecutive  noise  samples. J 
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APPENDIX I1 

DISCUSSION OF  CRITERION  FUNCTIONS 

It is important  to  recognize  the  fact  that  the  criterion  function 
used  in  the  case  where  the  error  function is a linear  function of a set  of 
parameters  ( one step  minimization  method) is not  identical ( even  to 
within a scale  factor)  to  the  criterion  function  which  results  when  the 
error   funct ion is  a nonlinear  function of a different  set of parameters  
( iterative  minimization  scheme). 

i = 1  
( A - 7 )  

The  minimization of &L is taken  with  respect  to  the  parameter 
vector = ( p1 , p2,  ps,  p4, ~ 5 ) ~  . If $* is tha;,-value of p'which  results  in 
+L attaining its unique  minimum  value, +L , then 

-P 

.II 

-P 4 *+*  "-b* 
+L (x, y ; p  ) = min  +L(x'Y;P) 

p' ( A - 8 )  

+ T 
The  ellipse  parameter  vector c = ( e l ,   e t ,  A ,  Bye) is   then found 

from  Eqn. ( 3 .  4 2 ) ,  that   i s ,  

i = 1  
(A-10)  
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T 
where  the  vector h = ( p 1 , p 2 , p , p 4 .  p , p 6 )  is a nonlinear  function 
of the  ell ipse  parameter  vector ?? with  which  the  minimization of +N is 
taken.  The  vector ?( b) is given by Eqns, ( 3. 10 - 3. 15) .  

Note  that +N may be factored 

N 

= ( P 6 - l ) '  ( A - 1  1 )  

"c 
Since p is a function of p' (  Eqn. 3. 3 9 1 ,  the  factor ( p 6  -1  may 2 

be  represented by some  function,  g( ;) , to  give 

(A-12)  

If $*: is that  value of 5 for  which +N attains its minimum  value, 
denoted by +h, then 

(A-13)  

(A-14)  

One  should  note  that if is divided by the  factor ( p6 -1 ) before 
the  minimization  with  respect  to 7? is  taken,  then  the  two  criterion  func- 
tions  would  be  identical  and  both  minimization  techniques would yield  the 
same  value  for  the  minimizing  parameter  vector ( assuming no boundaries 
are   encountered) .  

A comparison of +L and +& is  made  in  Table A. The  right  hand 
side of Eqn. ( A-14)  is  also  tabulated,  being  denoted  by +*. The  values 
of the  cri terion  functions  are  those  that   were  obtained by using  the  two 
minimization  schemes  on  an  ellipse  which is character ized by 

* .I> 

+ 
cg = 

(A-15)  

The  parameter  vector  estimates  which  correspond  to  these  values  for  the 
cri terion  functions  are  shown  in  Tables 1 and 2 in  Chapter IV. 
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It is interesting  to  note that in every case + * < +* in Table A-I ,  
as Eqn. ( A - 1 4 )  implies. N -  

TABLE A-I:  COMPARISON O F  CRITERION  FUNCTIONS 

0- N 

0 . 0  10 0. 1564 x 0. 2496 x 0 . 6 5 5 5  x 
0 . 0  20 0. 2379 x 0. 3795 x 0. 1846 x 10-10 
0 . 0  50 0.6631 x 0.1060 x 0. 7957 x 10-l '  
0 . 0  100 0 . 8 2 6 3  x 0. 1319 x 0.4480 x 

0. 1 10 0. 1757 x 10-1 0, 3219 x l o o  0 0. 2911 x 10' 
0. 2913 x 10' 
0. 1191 x l o 1  

0. 1 100 0. 1697 x 10 0. 2710 x 10 0. 2449 x l o 1  

0. 1 20 0. 1747 x 10-1 0. 3099 x 1 0  
0. 1 50 0. 8430 x 10-1 0. 1313 x 10 1 

1 

0. 2 10 0. 2264 x 10-1  0 .3992 x 10 
0 
1 
1 
2 

0. 3467 x 10' 
0. 2 20 0.  1611 x 10 0. 2566 x 10 0. 1687 x IO1 
0. 2 50 0. 2 6 2 7 x  10' 0. 5528 x 10 0. 3989 x l o 1  
0. 2 100 0. 5216 x 10' 0. 1164 x 10 0. 8 2 1 4  x l o 1  

0. 1232 x l o 1  

0. 6331 x l o 1  
0. 3 100 0. 1881 x 10 0. 3245 x 10 0. 1480 x l o 2  

0. 3 10 0. 9620 x 10-1 0. 2193 x 10 
0. 3 20 0. 3844 x 10 0 . 6 3 2 6  x l o 1  0. 2912 x l o 1  
0. 3 50 0. 7211 x 10' 0. 1151 x 10 

1 

2 
2 

0. 4 10 0. 2027 x 10' 0. 9 3 3 4 x  l o 2  0 0. 5916 x 10' 
0. 4 20 0. 2268 x 10 0. 1817 x 10 0. 6042 x 10 

1 

0. 4 50 0. 1097 x 10'  0. 3412 x l o 2  0. 9126 x l o 1  
0 ,  4 100 0. 1544 x l o 1  0. 1190 x l o 3  0. 1520 x l o 2  

0. 5 10 0 . 6 2 3 2  x 10-1 0 . 7 1 6 4  x 10' 0. 5555 x 100 
0. 5 20 0. 4839 x 10' 0. 1388 x l o 2  0. 4421 x l o 1  
0. 5 50 0. 1257 x l o 1  0. 7153 x l o 2  0. 8891 x l o 1  
0. 5 100 0. 3031 x l o 1  0. 1048 x l o 3  0. 2317 x 10' 
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APPENDIX 111 

COMPUTER  PROGRAM 

A listing of the  Fortran  program  which  was  used  to   es t imate   the 
five  parameters  associated  with  an  ell ipse is given  in  this  appendix.  The 
program  has  been  broken down into a main  program  along  with  several 
subroutines,  each of which  has a specific  function.  Each  subroutine is 
briefly  discussed  in  the  following  paragraphs. 

MAIN P r o g r a m  

The  main  program  performs  three  functions.  The first function 
is  to  read  all   the  required  input  information  for  the  overall   program. 
Secondly,  the  main  program  calls  the  various  subroutines  in  the  correct 
sequence  such  that  the  iterations  for  the  estimates of the   parameters   are  
correctly  performed.  Finally,   the  main  program  writes out the  input 
information  as  well   as  the  best   estimate  for  the  parameter  vector.  

The  main  program  that  is   l isted  in  this  appendix  is   the one  which i s  
used  in  the  estimation of the  parameters  of an  ellipse.  The  main  program 
which is used  for  the  estimation of the  parameters of a rectangle is iden- 
t ical   to  the  l isted  main  program  except  that   one  statement is added  which 
relates  the  size of the  fitted  ellipse  to  the  size of the  corresponding  rec- 
tangle.  This  scale  factor is discussed in  Chapter V. 

The  main  program  requires  the  following  inputs: 

NPAR the  number of parameters  which  are  to be 
estimated. 

NPOINT  the  number of data  points  which lie on 
the  boundary of the  unknown  pattern. 

NTRIAL  the  total  number of independent  local 
minimizations of the  criterion  function 
with  respect  to  the  parameter  vector. 
NTRIAL - > 1 .  
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MSMSQ the  maximum  number of times  which  the 
LOCMIN  subroutine  may  call  the SUMSQR 
subroutine. 

MRAND the  number of independent  parameter  vectors 
which are  randomly  selected  by  the RANSER 
subroutine. 

NSE T the  number of pat terns   whose  parameters  
a r e  to be estimated. 

CE the  initial  guess  for  the  unknown 
parameter   vector .  

MINPAR the  vector  corresponding  to  the  lower 
l imits  for  the  parameters.  

MAXPAR the  vector  corresponding  to  the  upper 
l imits f o r  the  parameters.  

SIGMA the  standard  deviation of the  gaussian 
noise  which is added  to  the  simulated 
data  points  generated in  the DATA 
subroutine. 

AVE the  average  value of the  gaussian 
noise  associated  with SIGMA. 

FSTOP the  upper  limit f o r  the  absolute  value 
of F. The  program is terminated if  IF I 
becomes  larger  than FSTOP. 

E  PHI  the  lower  limit  for  DPHI.  The  program 
is   terminated i f  DPHI be omes  smaller  
than  EPHI,  where d - J Z i )  -+( zi t 1 ) 

4 -  +( .‘ii> 

EC the  lower  limit f o r  DC. The  program  is  
terminated i f  DC becomes  smaller  than 
E C ,  where   S iTAZi  

dc = 
+ T- 
C i  C i  

EGRAD the  lower  limit  for  the  squared  magnitude 
of the  gradient  vector.   The  program  is  
terminated i f  IV+( ci)l  becomes  smaller 
than  EGRAD. 

2 
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EBDRY a constant  which is used in the  GRPREX 
subroutine  to  prevent  division by zero. 

DATA Subroutine 

The  purpose of the DATA subroutine is to  art if icially  generate the 
data  points  which lie on the  boundary of e i ther   an  e l l ipse  or  a rectangle. 
Although  the DATA subroutines  corresponding  to  both  an  ellipse  and a 
rectangle  are  shown  in  the  l ist ing,   only  one of them is included  in  the 
program  when it is  actually  used,  Appendix I gives   more  detai ls  as to how 
the  data  points are generated  and how simulated  noise is added  to  them. 

SUMSQR Subroutine 

The SUMSQR subroutine  simply  evaluates  the  criterion  function 
for a specific  value of the  parameter   vector .  It a lso  has   an  instabi l i ty  
indicator,  KX, which is set   to one if  the  absolute  value of F exceeds 
FSTOP. 

LOCMIN Subroutine 

The  LOCMIN  subroutine  performs a local  minimization of the 
cri terion  function  with  respect  to  the  parameters.  It does  this by calling 
the  next  three  subroutines. It also  checks  the  various  cri teria f o r  t e r -  
minating  the  program. 

R EG R ES  Subroutine 

The  REGRES  subroutine  evaluates  the  criterion  function ( PHI) ,  
the  gradient of the  criterion  function ( G R A D P )  , and  the  Gauss-Newton 
parameter  change  vector ( BETA) f o r  a specified  parameter  vector ( C) 
which is  supplied by  the  LOCMIN  subroutine. A library  subroutine ( MINV) 
is  used f o r  matrix  inversion. 

- GRASER Subroutine 

I 

The GRASER subroutine is called only when  the  Newton-Raphson 
method is used t o  determine  the  next  value  for  the  parameter  vector.  The 
GRASER subroutine  finds  the  optimum  binary  scale  factor by  which t o  
multiply Aci. 

- 
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GRPREX  Subroutine 

The  GRPREX  subroutine  is  called  only  when  the  full  Newton-Raphson 

(P( 2i) V(P( zi) 
step ( A?i = - 

IW zi) I ’ 
) violates a range  constraint. It then  projects 

the  gradient  onto  the  constraint  surface,  after  which  the GRASER subrou- 
tine  finds  the  optimum  binary  scale  factor  for  this  projected  gradient. 
The  GRPREX  subroutine  has  an  output  variable, KEXIT,  which  when  set 
to  one  indicates  that  the  parameter  vector  is on a constraint  boundary of 
the  constraint  region, R .  

RANSER Subroutine 

The RANSER subroutine  selects a  given  number  (MRAND) of 
parameter  vectors  randomly,  using a uniform  distribution,  and  determines 
that  parameter  vector  which  yields  the  smallest  value f o r  the  cri terion 
function.  This  parameter  vector  is  then  used  as  the  initial  guess  for 
another  local  minimization.  The RANSER subroutine  uses a l ibrary  sub- 
routine, RANDU, f o r  i ts   uniform  number  generator.  

A listing of the two l ibrary  subroutines,  RANDU and GAUSS, which 
generate  numbers  possessing  uniform  and  normal  distributions,  respec- 
tively,  is  given  at  the  end of the  program  l ist ing  for  the  sake of complete- 
ness. 

120 



5 

6 

50 

SUBROUTINE  RANDU  ( IX,   IY,   YFL)  

IY = IX * 65539 

IF ( IY) 5 , 6 , 6  

IY = IY + 2147483647 t 1 

Y F L  = IY 

Y F L  = Y F L  * .4656613 E - 0 9  

R E T U R N  

E N D  

SUBROUTINE  GAUSS ( I X ,  S, AM, V) 

A = 0.0 

DO  50 I = 1 , 1 2  

CALL  RANDU ( I X ,  IY,  Y )  

IX = IY 

A = A t Y  

V = ( A - 6 . 0 )  * S t  A M .  

R ETUR N 

E N D  



1 

5 0 0  1 

5002 

5003 

5004 

5005 

5C06 

5 0 0 7  

soon 

5009 

2 
so10 

3 

4 

5 

6 
7 
8 
5 0 1  1 

5 0 1 2  

5 0 1 3  
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5014 

9 
10 

11 

C 
C 

5001 

1 

2 

5C02 

5 0 0 3  

3 

5 0 0 4  

5C05 

4 

Y R I T E  1 6 r 5 0 1 4 )  T I M E  
FORCAT ( / / / / / I / / / / *  THE T I M E  R E O U I R  

K = K +  1 
I F t K - N S E T )  l01lltll 

GO IC 1 

1 E O  TC E X E C U T E  T h l S  P R O G R A M   W A S * r F 7 . Z * *   S E C O N O S - * I  

C h T i N U E  
S T O P  
E N 0  

THIS S U B R O U T I N E  IS U S E D  WHEN O A T A   P O I N T S   L Y I N G   O N  THE BOUNDARY OF 
A N   E L L I P S E   A R E   R E Q U I R E O .  

OICENSION X01100)*Y0l100)*XOlloo~*Yollool*cllo) 
S U B R O U T I N E  D A T A I C ~ S I C M A ~ A V E ~ N P O I N T )  

COWCCN/CUMZ/Xl1OO)~Y~lOOl 
COCCON/COP3/NGAUS 
D A T A  1 Z S / *  * /  

F O R C A T   ( * I E N T E R   O A T A   S U B R O U T I N E . * / / )  
Y R I T E  (6.5001) 

E 1 = C 1 1 )  
E 2 = C ( Z )  
A = C l 3 l  
I 3 = C ( 4 )  
r h = c l S l  
H X = S C R T l I . / E l l  
X l h l l = 2 . * H X  
X U 1  I )= -RX 
Y O 1  I ) = O .  
1 - 2  
X O l I I ~ - R X * I + X I N T / N P C l N l  
x u ( l * l ) = x o 1 1 )  
V 0 l 1 l = S 4 R T l l l . / E Z ~ * I 1 . - E 1 , x 0 1 1 ) , + 2 ) )  
v o l I * l ) = - v o l I )  
1 = 1 * 2  

X U 1  I ) = R X  
I F  1 1 - N P O I N T ' .  1.2.2 

VC11 I 1 - 0 .  . - . . - . 
Y R I T E  1 6 r 5 0 0 2 )  C ( l l . C I Z l  
FLIRPAT ( 1 X t *  THE F O L L O W I N G   P O I N T S   A R E   T H E   C O O R D I N A T E S  OF A N   E L L I P S  

2THE O R I G I N .  THE E Q U A T I O N   O F   T H F   E L L I P S E  I S  G I V E N   B Y   E l * X * X  t E Z * V  
I €  H A V I N G  NU O I S P L A C E C E N T   F R O M  THE O R I G I N * / *   A N 0   N O   R O T A T I O N   4 B O U T  

3 + Y  = l*/* wHERE E l  =*.F10.5.*  4NO €2 =*sFI0.5//l 
N S * h P O I N T - I  
W R I T E  (6.5003) l I Z S r X O l l ~ t V O ~ l ~ ~ l ~ l r N 1 ) 1 1 2 o . Y O l N P O l N T ~  
F U R P A T  1 4 1 A 1 t * l * ~ E 1 2 . 5 r ' t * ~ E l 2 ~ 5 ~ * ~ * ) )  
DO 3 I = l r N P O I N T  
X O l I ~ ~ X O I I ~ * C O S I T H l - V ~ ~ l ~ * S l N ~ l H l * A  
V O l I ~ = X f l ~ I ~ + S I N ~ T H ~ * Y ~ l l l * C O S ~ T H ~ * B  
C O N 1   I N U E  
DECREE=llA0./3.1415926536l*TH 
W R I T E  16*50041 C ( 3 l * C ( 4 ) * O E G R E E  

2UUS E L L I P S E   Y H I C H  HAS NOW B E E N   D I S P L A C E D  A =*.F10.5/* U I v l T S  I N  THE 
F O R C A T ( / / Z X v ' T H E   F O L L O Y I N G   P O I N T S   A R E  THE COOROINATES  OF THE P R E V I  

fl 3 X - O I R E C I I U N .  B = * r F 1 0 . 5 * *   U N I T S  I N  THE V - D I R E C T I O N *   A N 0   R O T A T E D  

I N T I   r Y D l N P O I N T  
TA = * s F 1 0 . 5 * *  C E G R E E S . * / / )  

T 1 4 l ~ 1 * * 1 * * € 1 ~ . 5 * * * * * E 1 2 . 5 * * ~ * ~ ~  
16*5005) l l Z ~ ~ X O l I ~ ~ V D l l ~ r l ~ l ~ N S ~ ~ l Z S ~ X O l N P O  

00 4 I = l t N P O l N T  
C A L L   G A U S S   l N G A U S * S I S H A * A V E * V )  

C 4 L L   G A U S S   l N C A U S * S I C M A r A V E * V )  
X ( I ) = x o l I ) * V  

v l I l = v o l I ) * v  
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5006 F O R C A T l / / Z X * * T H E   F O L L O W I N G   P O I N T S   A R E  THE P R E V I O U S   P O I N T S  WITH GAU 
l S S I A N   N O I S E  ADDEO. 1HE MEAN OF THE N O I S E  IS * r E 1 2 . 5 / *   A N D  THE S T A N  
2 D A R O   D E V I A T I O N  OF THE N O I S E  IS * r E 1 2 . 5 / / )  

16'5006) AVEISIGMA 

r l R I T €  IbrSOO?) l I Z S s X l l ~ ~ Y l l ~ ~ l ~ l r N S ~ r ~ Z S s X l N P O I N T ~ ~ Y l N P O I N T ~  
SCO? FORCAT 1 4 1 A 1 ~ * 1 ' r E 1 2 ~ 5 ~ * s ' ~ E 1 2 ~ 5 ~ * ~ * ~ ~  

5008 FORCAT I / *  E X I T   C A T A   S U B R O U T I N E * )  
W R I T E  1 6 ~ 5 0 0 8 )  

R E T U R N  
E N 0  

C 
C A RECTANGLE ARE  NEQUIREO. 

THIS S U B R O U T I N E  IS U S E 0  WHEN D A T A   P O I N T S   L Y I N G   O N  THE BOUNDARY OF 

O l P E h S l O N  C l 5 ~ s X 0 l 1 0 0 ~ ~ Y 0 l 1 0 0 ~ s X D l l O O ~ ~ Y D l l O O ~ s X l l l O O ~ ~ Y l l l O O ~ ~ X 2 l  
S U B R O U T I N E  D A T A l C s S I G C A s A V E ~ N P O l N T ~  

l 1 0 0 ~ * Y Z ~ 1 0 0 ~ r X 3 ~ 1 0 0 ~ * v 3 l l o o ~ * x 4 l l o o ~ * Y 4 ~ l o o ~  
CUCCCN/CUWL/Xl100)sYllOO~ 
COCPCN/CUM3/NCAUS 
D A T A  IZI/* * /  

5 C 0 1   F O R C A I  ( ' I E N T E R  L A T A   S U B R O U T I N E . * / / )  
WRI  l t  ( 6 ~ 5 0 0 1 )  

X M A X = l . O / S Q R T l C I l ) )  

I - l ) * V I N T / N P  

l - I ) * X l h T / N P  

X U (  I ) = x 2 1  I -hrP) 
V O I I ) = V Z ( I - N P )  

N N = 3 * N P + l  
% - 2 * h P * 1  

DO I IZNrNh 
X O l I ) = X 3 ( 1 - Z * N P )  
V O I  I ) = V 3 (   l - Z * N P )  
N = 3 * N P + Z  
Y N = 4 + N P  
DU a I=N.NN 
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I 

8 
X O l I ) = X 4 i 1 - 3 * N P )  
Y O l l   ) = Y 4 (   I - 3 * N P J  
W R I T E  ( 6 . 5 0 0 2 1  X l r : T , Y l N T  

5002 F O R M A T   I 2 X 1 ' T H I :   F G L L I ; W l r . r G   P O I N T S   L I E   O N  A R E C T A N G L E   H A V I N G   N O   O I S P  

Z R E C T A N G L E  I S  C E N I E R E l l  A f i U U T   T H E   O R I G I N   A N 0   l S ' r F 6 . 2 , '   U N I T S  I N  L E  
3NCTH I N  T t l E  X - C I K E C T I U N   A f I D ' , F h . Z t '  U N I T S ' / '  I N  L E N G T H  I N  THE Y-D 
4 1 R E C I I C N . ' J  

N S - K P O I N T - 1  
W H I T E  ( 6 1 5 0 0 3 )  i l Z t t X O l l ~ r Y O l l ~ r l ~ l ~ N ~ ~ ~ l Z L ~ X O l N P O I ~ ~ T ~ ~ Y O l N P O l N T ~  

L L A C E C E N T   F R U P  THC ORIGIN ANU N O   R O T A T I O N   A B O U T  THE O R I G I N . ' / '   T H E  

5C03 F O R C A T  L 4 ( A l r ' ( ' ~ E l 2 . 5 t ' ~ ' ~ E 1 2 . 5 , ' ) ' ) )  
00 Y I = l r N P U l N T  
X U ( I I = X O ( I l ~ C T t i - Y O ~ I l ~ S T ~ i A  

9 Y O l I ~ ~ X O ~ I l + S T H ~ Y O ~ ~ l ~ C ~ H + ~  

5 0 0 4  FORMAT I / / L X s ' T t I E  F U L L U I 4 I N G   P O I N T S   A R E   T H E   P O I N T S   O N   T H E   P R E V I O U S  
Y R I l E  1 6 . 5 0 0 4 )  A s t l r T H  

2 - D I R E C I I C N . ' s F 6 . 2 , '   U N I T S  I N  T H E   Y - O I R E C T I O N I   A N D   R O T A T E D   b Y ' r F 6 .  
I R E C T A Q G L E  WHICP H A S  NOW D E E N   T R A N S L A T E D ' v F 6 . 2 s '  UNITS I N  T H E ' / '  X 

321' R A C I A N S . ' )  
H R I T F  (615005) l I Z ~ r X D I I I ~ Y D ~ I ~ ~ I ~ l ~ N ~ ~ ~ l Z ~ ~ X D ~ N P O l N T ~ ~ Y O l N P O l N T ~  

5C05 F U R P 4 T  ( 4 ( A l . ' i ' . E 1 2 . 5 1 ' . ' ~ E l 2 . ~ , ' ~ ' ) )  
DO 10 I = l r N P C l N T  
C A L L  C A U S S ( N G A U S r S I G C A , A V L ~ , V I  
X ( l ) = x c ( I I + v  

10 Y i I ) = Y o l I l + v  
L A L L  G A U S S I ~ G 4 U S ' S I G C A , A V E I V )  

5C06 F O R f ' 4 T I / / Z X e ' T H E   F U L L 0 H I r : G   P O I N T S   A R E   T H E   P R E V I O U S   P O I N T S   W I T H   G A U  
ISSIAk N O I S E  ACCEU. ThE M E A N  OF THE N O I S E   I S  ' * € 1 2 . 5 / '  A N D  THE S T A N  

W K l T E  (6,5006) A V E . S I G M A  

2 O A R U   D E V I A T I U N  CF THE NCISE 1 5  ' . E 1 2 . 5 / / )  

5 C 0 7  F O R P A 1  
W R l T F  1 6 ~ 5 0 0 7 )  ~ I L L ~ X i I ~ ~ Y l I 1 ~ 1 ~ l ~ N ~ l ~ l Z ~ ~ X i N P O l N l ~ ~ Y l N P O l N T l  

5008 F O R P A T  
WHlTt 

K E T U R N  
E NC 

SURHCU 

1 

5001 F O R " 4 T  I '  THE S Y 5 T E P  I S  U N S T A B L E   F O R   T H E S E   P A R A M E T E R   V A L U E S .  

I F   I A H S ( F ( I ) ) - F S l O P )  2 s l r l  
K X = l  
h R l l E  1 6 r 5 0 0 2 1  ( C ( K ) , K = I , N P A R I  

IUM-SCIJAREO E R K O H  H I L L  NOT HE E V A L U A T t O .   T H E   P A R A M E T E R S   A R E ' / '  
2 = ' . F I S . R , '   C I 2 )  = ' r E 1 5 . 8 1 '  C l . 3 )  = ' r E I S . R , '  C ( 4 )  = ' , E 1 5 . 8 , '  C 
3 ' , E l S - R )  
GO 11; 3 

THE S 
C l l )  

I S J  - 
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500 1 
1 

2 

3 

5 0 0 2  
4 

5 
b 

8 
? 

9 
10 

1 1  

5 C 0 3  

SO04 

5005 

12 

1 3  
14  
5 C 0 6  

15 

16 

l N P O I h T * N P A R J  
S U B R O U T I N E   L U C C l I N  l C 1 . P H I . H I N P A R ~ M A X P A R I E P H l r E C t E C R A D t E B D R Y ~ M S M S Q ~  

OlMEhSlUlrr C l I D J r C 1 l 1 0 J r G R A D P ~ 1 O ~ ~ B E T A ~ l O J ~ O E L T A C ~ l O ~  
R E A L   ~ I N P A R l 1 0 ) r ~ A X P A R l 1 0 ~  
NSPSC=O 
NS=O 
N'D = 0 

F O R P A T  ( ' I E N I E R  LOCCl IN   SUBROUTINE. * )  
W R I T E  i 6 . 5 0 0 1 J  

P H l l h l T = P H I  
csc=o  
DO 2 I z l v N P A R  
L S Q = L S O * C l l I ) * C 1 l I J  
GHACPS=O. 

G H A C P S = C R A D P S * G R A D P l I ) + G R A D P ( I )  

C A L L   R E G R E S  ~ C ~ ~ G H A C P ~ B E T A I P H ~ ~ Y P O ~ ~ T ~ N P A R J  

DO 3 I = I * N P A R  

bRlTE 1615002) GHADPS 
I F f G R A O P S - € G R A D )  4 , 5 1 5  

FORPAT ( / '  IhE CRAOIENT  CGhD1,T ION IS S A T I S F I E D .  THE G R A D I E N T   M A G N I  

60 T C  3 2  

C I I J = C I ( I ) + A E T A ( I J  

I T U D E  S U U A R t O  IS L R A C S  ' ~ E 1 5 . h )  

L O  6 I = l * k P A R  

DO M I=I . l r rPAR 
I F I C I O - N I N P P R I I ) J   2 0 1 2 0 1 7  

C O N 1   l N U k  
IFICIII-PAXPARII)) 13~20.20 

C A L L  SUMSGR ( C I P ~ l R E ~ l K X , N S M S O I N P O I N l r N P A R )  
I F ( r ( X )   9 9 Y . 2 1  
I F I P H I R E G - P H I )  10122.22 

clfI)=clI) 
DO 1 1  I = l . N P A R  

U E L T A C (  I ) = b E T A l  I J 
k R I T 6  1 6 1 5 0 0 3 )  P H I R E G  
FOHCAT THE F U L L   6 A U S S - N E W T O N   S T E P   Y I E L D S  A SMALLER VALUE  FOR 

I P H I  hITHOUT V I O L A T I N G * / *  ANY  CONSTRAINTS.  THE NEW V A L U E  F O R   P H I  IS 
2 P H I  = ' r E l 5 . 8 )  

W R I T E  (6.5004) 
FURCAT I / '  I C l ( I ) # / )  
W R I T E  l 6 * 5 0 0 5 J  I I r C I I I ) ~ I ~ I ~ N P A R J  
FCJRPAT lllO~E20.8) 
~ P H I = ( P H I - P H I R E G J / P h I  
P t i l = P H I R E G  
GU I C  1 3  
U P H I = l P H I - P H I G R A J / P H I  
P H I = P H I G R A  

kRllf (6.5006) C P H l  
I F ( U l ' b l - E P H l )  1 4 * 1 4 * 1 S  

F U R P A T  I / '  THE N O R M A L I Z E D   S U M - S Q U A R E 0   E R R O R   C H A N G E   C R I T E R I O N  1s SA 

GO T t i  32 
OELCSQ=O. 
00 I 6  I Z l r N P I R  
DELCSQ=OELCSC+DELTACll~*DELTACllJ 
D C - D f L C S P / C S O  

I T l S F I F O .   U P H I  = ' t E 1 5 . 8 J  

I F  ( D C - E L I  1 7 r 1 7 r  LE 

126 



5C07 FURPAT I / *  THE  PPRAPETER  CHANGE ERROR C R I T E R I O N  IS S A T I S F I E D .  DC 
1 7  W R I T E   1 6 . 5 0 0 7 )  CC 

1 ' e E 1 5 . 8 )  
GO 1 C  32 

18 I F I N S P S Q - C S P S P )  l r19r19 

5008 FORPAT I / '  THE L C O P   C O U N T   C R I T E R I O N  IS S A T I S F I E D . * )  
19 W R I T E  16m500Bl 

GO T O  3 2  
20 w R l r t   1 6 r 5 0 0 9 )  
5 C 0 9   F U R Y A T  I / *  THE GAUSS-NEWTON  PARAMETER CHANGE  VECTOR  VIOLATES  THE 

I R A N C E   C O N S l R A I N T S . * / *  A NEWTON-RAPHSON STEP WILL BE T R I E D . * )  
t i l l  1 C  2 3  

5 C I O  F O R P b T  I / *  THE b A U S S - N E Y T C N   S T E P   Y I E L D E O   A N   U N S T A B L E   V A L U E   F O R  PH 
2 1  W R I T E  16.5010) 

11. T H E R E F U R E I * / *  A NEWTON-RAPHSON  STEP WILL BE T R I E D . ' )  
GO TC 2 3  

2 2  W K I T F  16.5011)  
5 0 1 1  FORPAT I / *  P H I   O B T A I N E D   F R O M  THE GAUSS-NEWTON  STEP WAS GREATER TH 

I A N  P H I   H E F O R E  T H t  S T E P  WAS T A K E N - ' / *  TVEREFOREI A NEWTON-RAPHSON S 
2 T E P   W I L L  BE 1 R I F C . ' )  

24 C I I ) = C  
D E L T A C  

5012 F O R P A 1  
rrR I T E  

I L T b C I  I 
W R I T E  

5013 F U R P A T  
00 2 6  
I F  IC1 I 

26 C U N T I N  
2 5  I F I C l l  

I DE 

I 
I 
1 .  
U 

H I N S C L = Z . * * N S  
U U  2H l = l . N P A K  

2 7   C O N I   I N U F  

28 0 E L T 4 C l I l = O E L l A C l I ~ / H I N S C L  
C A L L  G I ( A S E R  l P ~ I I N T ~ C I . ~ S ~ D E L T A C ~ K X ~ N S M S ~ ~ N P O l N T N P A R )  

N T = N S  
P H I G A A - P H l l N T  

ryS=hC 
N D = N  1 
I F  ( K X )  2 9 r 2 9 . 3 2  

29 W H I T E  lhr5014) N D v N S  
5 0 1 4  FORPAT ( / '  THF LP l ICUP  CELAY  SCALE  FACTOR  FOUND  FROM  THE  GHASER S 

2/* USFO  FUR T H E  I 4 E X T  GRASER  SUPROUTINE I I F  I T  IS C A L L E D   A G A I N   D U R l  
I U H R O U T I N E   n A S  k = ' r 1 2 r '  AND  THE I N I T I A L   D E L A Y   S C A L E   F A C T O R  TO b E '  

3NL THIS L U C P I N   S U b R C U T I N E J  I S  N = *.I2) 

5 0 1 5  FORPAT I / '  1PE  GAASEH  SUHRUUTINE 
w H l T F  1 6 r 5 0 1 5 )  P M I t i R A  

I H A P E T E R S  TU ti€'//' . I  
FOUND  PH 

W R I T k  16.5016) l I ~ C l l l J r l = l r N P A R  

GU TI: 1 2  
F O R P A T   1 1 1 0 ~ 5 X . E L 0 . 8 )  

= '.EI5.8.' AND  THE  PA 
C l I l ) * / )  

L l R l T E  1 6 . 5 0 1 7 )  
~~ ~ " 

F U R V 4 T  I / '  T h E  NEWTON-RAPHSON  STEP  V IOLATES THE RANGE  CONSTRAINTS 
.'/' G R A D I E N T   P R O J E C T I O N   A N D   E X T R A P U L A T I O N   F O L L O W . ' )  
C A L L   G R P R E X  ( C l ~ U E L T A C , M I N P A R ~ M A X P A R ~ G R A O P ~ K E X l T r E B D R Y ~ N P A R )  
I k l K F X l T )   2 7 . 2 7 1 3 1  

F O R P 4 T  I / '  THE C U N S T R A I N F O   M l N l l v U M  IS P H I  ' t E 1 5 . 8 r '  AND THE P A R A  
W R I T E  l h r 5 0 1 8 )  P H I  

M E T E R S   A R E ' / / *  I C l I l ) * / )  
W R l l k  1 6 r 5 0 1 9 )  I I , C l l  I J v I = I * N P A R )  
F O H P A T  IIIO,~X,FI~.BJ 
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P H  1-0. 

5 
00 5 I = l * N P O I N T  
P H I = P H I + F l I ) * F l I l  

5 C 0 9   F O R C A T  I / / *  C l l l  
I M E T A I L )  R E T A I Z )   B E T A  

c 1 2  

W R I T €  16r5010) I C I I I ~ I ~ I ~ N P A R  

UHlTt 16.50091 

5010 FURPAT llOlF10.5~1XlrE9.2~ 

SCl1 FORYAT 1 / *  E X I T  REGRES  SUBRUU 
WHlTF 1 6 r 5 0 1 1 )  

RETUWN 
F NO 

T I N € . *  

O l C l t h S l O N  C l l l O ~ ~ C l l O ) r D E L T A C 1 I O ) r D E L C n N 1 l O )  
5 U B R U U T I N k   G H A S E R  1 P H l r C l r N ~ O E L T A C t ~ X ~ N S M S O ~ N P O l N T ~ N P A R l  

U R l l E  16.5001) 
5C01 FORCAT I / / *  FNTER CRASER  SUBRf lUTINE. ' )  

I C l 1 1 = C l l I ) + O F L l A C 1 I l  
OU I I = l r N P A R  

C A L L  SUCSOW I C ~ P H I 2 r K X ~ N S W S O ~ N P O I N T ~ N P A R ~  
I F I K X J  3 r 3 r l  

2 W R I I E  16*5002)  
5002 

3 

4 

5 
s c c 3  

6 
7 
tl 

9 

10 

I 1  
12 

13 
1 4  
I5 

16 
I ?  
5004 

1 t iRA5FR  S IJMHOUTI IYE. * / / )  
k O N P A l  I / '  I N I T I A L   C E L T A C   R E S U L T S  I N  A N   U N S T A B L E   S O L U T I O N . ' / '  E X 1 1  

"0 rc 39 
DO 4 I = I . N P A H  

C 1 I ) = C 1 l I ) + O E L T A C 1 I )  
D E L l A C I I ) = U L L T A C 1 I ) / Z .  

C A L L  SUCISOH I C I P H I I ~ K X ~ N S M S Q I N ~ O I N T ~ N P A R )  

I r r R I l E  Ih*5003) 
I F I K X )  6 1 6 9 5  

FORYAT I / '  I H E  S T A R L E   R E t i I O N  IN PARAMETER  SPACE I S  NOT C O N V E X . * / *  

GO TC 3 9  
I T I P H I I - P H 1 2 )   9 ~ 9 . 7  
I F I P I - 1 2 - P H I )  I 6 t l l r 8  
P H l Z = P H l l  

GO I C  3 
N = N +  1 

UG IO I = l . N P A R  
D E L T 4 C l I ~ = D E L T A C 1 l ) / ? .  
C 1 I ~ = C l 1 I ) + C F L T A C 1 I )  
N=h+ I 

I E X I T  C R A S F H  s u e R u u T I ~ E . m / / )  

C A L L  SUWSCR 1 C ~ P H l O ~ K X ~ N S W S O ~ N P O I N T ~ N P A R I  
I F I K X )  L l ~ l l t S  
I F I P H I I - P H I O J  1 3 * 1 3 * 1 2  
P H l Z = P M l l  
P H I I = P H I O  
C U  T C  9 

CJcl 15 I = I * N P A R  
IF1PhII-PMlJ 14r14 r12  

I J E L T A C I I   ) = Z . * O E L T A C 1  I )  
GO IC 32 
I F I N )  1 7 * 1 7 * 1 9  
* R I T E  16*5004) 
FORCAT I / *  THE STEP  FOR  N+O IS L O C A L L Y   M I N I M I Z I N G . * / *  E X I T  GRASER 

l S U B R G l J T I N E . * / / ~  
00 I H  I = I * N P A R  
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18 C l ( I ~ = C l l I ~ ~ Z . * C E L T A C ~ I l  
P H I t P H I Z  
GO IC 39 

D E L T A C ( I l = 4 . * O E L l A C l I )  
19 00 20 I = l . N P A R  

20 C ( I ) = C l ( I ) * C E L T A C l I )  
2 1  N=N-I 

P H l O = P H I  1 
PHI l r P H l . 2  
C A L L   S U H S O R  IC~PHIZIKXI~SMSO.NPOINT~NPAR) 
I F I K X )  2 3 . 2 3 . 2 2  

22 M R I T E  ( 6 . 5 0 0 5 )  
5005 F O R Y A T  ( / '  D E C W E A S I h G  N H A S   C A U S E D  THE S E A R C H  T O  ENTER A N   U N S T A B L E  

1 R E l i I U N . ' / '  E X I T   C R A S E R   S U B R O U T I N E . ' / / )  

23 I F ( P k l l - P H l 2 l   3 0 . 2 4 . 2 4  
LLl TI; 3v  

2 4  I F I N l  25.25.28 
2 5  PHI=PHIZ 

5006 F U R P b T  I / '  C E C R t A S I N G  N H A S   K t D U C F D  N T O  Z E R O . ' / *   E X 1 1   G R A S E R   S U B R  
W R l l E  16,5006)  

26 30 Z I  I = l . I U P A R  

ti0 I C  39 
2 8  DLI 29 I = l . N P A H  

~ E L T A C ( I l = 2 . * D F L T A C l l l  
2 9  C I I ~ = L l ~ l ) + D t L l A C l I )  

GU I C  2 1  
3 0  30 3 1  I = I . N P A W  
3 1   I I E L T A C ( I I = D € L T A C l I ) / 2 .  

l U U T l h F . ' / / l  

2 1  C I ( I ) = C I ( I ) + C E L I A C I I )  

37 ~ U A C C N ~ l 3 ~ / 4 ~ l * l P ~ 1 7 ~ 5 ~ * P H l l * 4 ~ * P H l O l / l P H l Z ~ 3 ~ * P H l l + Z ~ * P H l O l  
h = N + l  

I )ELC).Nl  I ) = L U A C M N + D E L T A C I  I I 
DC 3 3  I = l , N P A R  

3 3  C l I ) = C I I I l + C t L C C N ( I )  
C A L L   S U M S C R  l C ~ P ~ l ~ l h , K X ~ , N S M S Q ~ Y P ~ l N T ~ N P A R )  
I F t K X )  3 4 9 3 4 . 5  

3 4  I F ( P ~ I P I N - P H I 1 )  3 5 9 3 7 . 3 7  
3 5  CU 3 6  I = l . N P A R  
36  C l l 1 ~ = C l ( I I + C E L C ~ N I I l  

P H I = P P I M I N  
WHITE ( 6 , 5 0 0 7 )  P H I  

5 C 0 7  F( IRCAT I / *  THE C U A C R A T I C  F I T  F O R M U L A   W A S   U S E D  TO C O M P U T E   D E L T A C .  T 
I H E  C l N l W U H   V A L U E   F O U N D   F O R   P H I   U A S   P H I  * .E15 .8 . / '  E X I T  G R A S E R   S U  
? H R O l J T l N E . ' / / )  
GO TL 39 

3 1  P H I = P H I l  
00 3$l  I = 1  .%PAR 

3 R  C l l 1 I = C l ( I ) + D E L T A C ( I )  

5 0 0 8  F I J R P A T  I / '  T H E   B I N A K Y   P I N J M U M  IS L O W E R   T H A N   T H E   Q U A D R A T I C   M I N I M U M .  
W H I T E  16 .500HI  P H I  

Z S U B A f l U T I N E . ' / / l  
1 IHF- M I N I M U M   V A L U E   F C U N O  FOR P H I  WAS P H I  = ' .E15.8. / '  E X I T  G R A S E R  

3 9  C O N 1  INUE 
H t  TljAN 
E N D  

S U R K G U T l N t   G H P R E X  ( C ~ D E L T A C ~ M I N P A R ~ M A X P A R ~ G R A O P ~ K E X I l ~ E B D R ~ . N P A K l  
I ) I P E h S l O N  C ( 1 0 ~ r G E L T ~ C ~ 1 0 ~ r G R A D P ~ l O ~ ~ C O N ~ N D l l O l  
H E A L   K O . K S T E P . M I N P A R (   I O l . M A X P A R l 1 O J  
I N T E G E R   C O N B N C v C I N O € X  
H W l T k  1 6 . 5 0 0 1 )  
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5 0 0 1  

I 
2 

3 
4 
5 

6 
5002 

7 

e 

9 
10 

I 1  

1 3  
I2 

1 4  
15 

16 

5C03 

5004 

5005 

1 7  

5C01 

1 

2 
3 

FORPATI/ '  E N T E R  GHPREX SUBROUTINE.') 
C I N O € X = O  
KO=O. 
K E X I T - . O  
DO 5 l = l t k P A R  
C O N t l h D I  I 1-0 
I F I C ~ I ~ - P I N P A R I I ) - E B O R Y )  l e l r 3  
I F I C H A C P I I ) )  5 . 2 ~ 2  
G R A U P I I ) = O .  
C I N D F X = C I N U E X t l  
C O N R N D I  I ) = I  
GO T C  5 
I F l C l I ) - M A X P A R l I ) t E B D ~ Y )  5 1 4 9 4  
I F I C R A D P I I ) )  2 * 2 , 5  
C U h T   I N U E  
I F I C I N D F X - N P A R J  t l r 6 r 6  

F O R M A T  I / *  I H E  S E A R C H   P R O C E O U R E   H A S   A T T A I N E D  A C O N S T R A I N E D   M I N I M U M  
* R I T E  16.5002) 

I . * / *  E X I T  CRPREX S U B R O U T I N E . * / / )  
K E X l T = l  

U € L T A C I I ) = O .  
GO 1L I 7  
I30 I 5  I = l * N P A R  
I F I C L N B N O I I ) )  919.15 
I F I G ! 7 A D P I I ) )   1 0 . 1 5 ~ 1 1  
K S T E P = ~ L ~ I l - ~ P X P A H I I ) ) / G K A O P l  
cu rl:  12 
K S T € P ~ I C I I ) - C l h P P H I I ) ) / C H A D P (  
I F ( K O )  1 4 r 1 4 * 1 3  
I F I K S T F P - K O )  14115.15 

C!Ih 1 I W E  
DO 16 I - I I N P P R  
~ E L T D C I I ) = - K O * G R A C P l I )  
W A I T F  1 6 . 5 0 0 3 )  

DO ? I = l * h l P A R  

K O = K S T F P  

l l A C 1 3  
F U R P A  

w R I T F  
F O R P A  

( / / *  
. ~~ 

D E L T A C I  1 )  D E L T A C I  2 )  
C E L T D C ( 4 )  

OE L 
D E L T A C I S ) * / )  

1 6 . 5 0 0 4 )   l D E L T A C I I ) * I = L ~ N P P R )  
T lIOX~5ElA.M) 

HNllE 1 6 ~ 5 0 0 5 )  
FL IRPAT I / *  GRPDIENT P R O J E C T I O N   A N 0   E X T R A P O L A T I O N   T O  A B U U N O A R Y   H A S  

C U h l   I N U E  
R F T U d N  
E h C  

I B E E N  A C C O M P L I S H E D . ' / '   E X I T   G R P R E X   S U B R O U T I N E . ' )  

S U B N U U T I N E   K A N S E A  I C l r M l N P A R ~ H A X P A R ~ M R P N O ~ I Y ~ N P D l N T ~ N P A R )  
G I P E h S I U N  L 1 1 1 0 ~ ~ C l 1 0 ~ ~ C l 1 0 )  
R E A L   P I N P A R l l O ) , H A X P P R 1 1 0 )  
W R I T E  l 6 r S O O L )  
F U R C A T   I ' I k N T E H   N A N S E R   S U B H U U T I N E . ' / )  
h(SC1SC'O 
UU I I = I * N P A S  

I X ' I Y  
I = I  
C O N I  l N U t  
C A L L  R A N O U I I X * I Y * Y F L )  

C I l I ) = ~ I N P P R l I ) t U l I ) o Y F L  
I x = I Y  

~ ) I I ) = C A X P A H I I ) - C I N P A R I I )  

r = 1 t 1  
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I F  ( I - N P A R )  3 ~ 3 9 4  
4 C A L L   S U M S Q R  ( C l r P H l r K X ~ N S ~ S Q r N P O l N T ~ N P A R I  

I F  ( & X )  5.592 
5 ' r l R l I E  ( 6 ~ 5 0 0 2 )  NSWSC 
5C02 F O R l r d T  I *  RAkCCW S E A R C H I N G   H A S   E S T A B L I S H E D  A S T A R T I N G   V A L U E   F O R  PH 

2 1 .  NSMSO =*13/) 
DC 11 I s Z r M R A N D  
J= I 

6 
C A L L   R A N D L J l I X r   I Y r Y F L )  
C L I N T   I N U E  

I X = l V  
C ( J ) = C I N P A H I J ) + C I J ) * Y F L  
J = J + l  

r 
I F  I J - N P O K )  6 . 6 . 7  
C A L L   S U M S C K  (CrPHIRANrKX.NSMSOrNPOINT~NPAR) 
I b  I K X )  H . H . 1 1  

8 
9 

I F   I P H I - P h I R A N )  11*11,9 
P H I - P t 4 I d A N  

10 C l l J ) = C t J )  
1 1  C ( 1 k 1  I NU€ 

5003 F U R C A T  I / '  THF S M A L L E S T   V A L U F   F O U N D  BY THE H A N S E K  

UC 1 0  J = l  . N P b R  

h K l r F  ( 6 r 5 0 0 3 )  P h l  

1 H t  S I J F " \ O U A H t D  ERKOR IS P H I  'E15.8//) 
S U B R O U T I N E  FOR 1 

I M l Z l N G   P A R A M E T E R  
C ( 3 )  

. -. 
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